Answer:
3 1/5 (or 3.5)
Step-by-step explanation:
2(7) - 7(-1)
_______
7 + -1
Next:
14 + 7 (two negatives make a positive)
_____
6
Next:
21/6 which equals 3 1/2 (3.5)
X-3=14
+3 +3
x=17
x-3=-14
+3 +3
x=-11
Answer:
![1. \quad\dfrac{1}{k^{\frac{2}{3}}}\\\\2. \quad\sqrt[7]{x^5}\\\\3. \quad\dfrac{1}{\sqrt[5]{y^2}}](https://tex.z-dn.net/?f=1.%20%5Cquad%5Cdfrac%7B1%7D%7Bk%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%7D%5C%5C%5C%5C2.%20%5Cquad%5Csqrt%5B7%5D%7Bx%5E5%7D%5C%5C%5C%5C3.%20%5Cquad%5Cdfrac%7B1%7D%7B%5Csqrt%5B5%5D%7By%5E2%7D%7D)
Step-by-step explanation:
The applicable rule is ...
![x^{\frac{m}{n}}=\sqrt[n]{x^m}](https://tex.z-dn.net/?f=x%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%3D%5Csqrt%5Bn%5D%7Bx%5Em%7D)
It works both ways, going from radicals to frational exponents and vice versa.
The particular power or root involved can be in either the numerator or the denominator. The transformation applies to the portion of the expression that is the power or root.
Did you mean -1? If so your answer would be, there is no intercept with the y axis. The intercept with the x axis is at (1/2, 0)