1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zigmanuir [339]
3 years ago
12

Help I cannot figure this question out.

Mathematics
1 answer:
netineya [11]3 years ago
3 0

Answer:

B. x = -1 ± i

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Standard Form: ax² + bx + c = 0
  • Factoring
  • Quadratic Formula: \displaystyle x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}

<u>Algebra II</u>

  • Imaginary Numbers: √-1 = i

Step-by-step explanation:

<u>Step 1: Define</u>

x² + 2x = -2

<u>Step 2: Identify Variables</u>

  1. Rewrite Quadratic in Standard Form [Addition Property of Equality]:        x² + 2x + 2 = 0
  2. Break up Quadratic:                                                                                        a = 1, b = 2, c = 2

<u>Step 3: Solve for </u><em><u>x</u></em>

  1. Substitute in variables [Quadratic Formula]:                                                \displaystyle x=\frac{-2 \pm \sqrt{2^2-4(1)(2)}}{2(1)}
  2. [√Radical] Evaluate exponents:                                                                     \displaystyle x=\frac{-2 \pm \sqrt{4-4(1)(2)}}{2(1)}
  3. Multiply:                                                                                                           \displaystyle x=\frac{-2 \pm \sqrt{4-8}}{2}
  4. [√Radical] Subtract:                                                                                        \displaystyle x=\frac{-2 \pm \sqrt{-4}}{2}
  5. [√Radical] Factor:                                                                                        \displaystyle x=\frac{-2 \pm \sqrt{-1}\sqrt{4}}{2}
  6. [√Radicals] Simplify:                                                                                       \displaystyle x=\frac{-2 \pm 2i}{2}
  7. Factor:                                                                                                             \displaystyle x=\frac{2(-1 \pm i)}{2}
  8. Divide:                                                                                                             \displaystyle x = -1 \pm i
You might be interested in
25 POINTS AND BRAINLIEST IF ANSWERED CORRECTLY!
vesna_86 [32]
X=-1 hope this helped!
3 0
3 years ago
Read 2 more answers
Let L be the line parametrized by x = 2 + 2t, y = 3t, z = −1 − t. (a) Find a linear equation for the plane that is perpendicular
Elden [556K]

Answer:

Step-by-step explanation:

Given that L is a line parametrized by

x = 2 + 2t, y = 3t, z = −1 − t

The plane perpendicular to the line will have normal as this line and hence direction ratios of normal would be coefficient of t in x,y,z

i.e. (2,3,-1)

So equation of the plane would be of the form

2x+3y-z =K

Use the fact that the plane passes through (2,0,-1) and hence this point will satisfy this equation.

2(2)+3(0)-(-1) =K\\K =5

So equation is

2x+3y-z =5

b) Substitute general point of L in the plane to find the intersecting point

2(2+2t)+3t-(-1-t) =5\\4+8t+1=5\\8t=0\\t=0\\(x,y,z) = (2,0,-1)

i.e. same point given.

3 0
3 years ago
Find all solutions of the given system of equations and check your answer graphically. HINT [See Examples 1-4.] (If there is no
Likurg_2 [28]

Answer:

Infinitely\ many\ solutions\ exist.\\\\Solutions\ are\ (x,\frac{3}{4}x-1)

Step-by-step explanation:

Given\ equations\ are\\\\3x-4y=4.................eq(1)\\\\9x-12y=12..............eq(2)\\\\divide\ eq(2)\ by\ 3\\\\\frac{1}{3}(9x-12y=12)\\\\\Rightarrow 3x-4y=4\\\\Hence\ equations\ represent\ the\ same\ line.\\Hence\ Infinitely\ many\ solutions\ exist.\\\\3x-4y=4\\\\4y=3x-4\\\\y=\frac{3}{4}x-1\\\\Solutions\ are\ (x,\frac{3}{4}x-1)

3 0
3 years ago
What if the value of x? show all work
alina1380 [7]
For this case we can make use of the Pythagorean theorem.
 We have then:
 (root (117)) ^ 2 = x ^ 2 + 6 ^ 2
 Clearing x we have:
 x ^ 2 = (root (117)) ^ 2 - 6 ^ 2
 Rewriting:
 x = root (117-36)
 x = root (81)
 x = 9
 Answer:
 
The value of x is given by:
 
x = 9 cm
4 0
3 years ago
Least common multiple of 9 45 and 81
WITCHER [35]
<span>The lowest common multiple is the smallest number that is a shared multiple of a set of numbers. 9 x 1 = 9, 9 x 5 = 45 and 9 x 9 = 81. The smallest common multiple is 9.</span>
5 0
4 years ago
Other questions:
  • Which step should be completed first to solve the equation --2 = 3z + 4 ?
    13·1 answer
  • Help me please ASAP!!<br> Serious answers only please | multiple choice
    11·2 answers
  • The collection of whole numbers is an example of a set. OA. True O B. False​
    5·1 answer
  • Help please 20 points.
    8·1 answer
  • Find the lesser of two consecutive integers with a sum greater that 16
    15·1 answer
  • Please help
    11·1 answer
  • lines a and b are represented by the equations given below: line a: 6x 6y = 24 line b: x y = 4 which statement is true about the
    12·1 answer
  • help !!!! Consider the function below. Explain how you would determine the x and y intercept of the function without using techn
    10·1 answer
  • Music, in 2001, full-length cassettes represented 3.4% of total music sales. Between 2001 and 2006, the percent decreased by abo
    8·1 answer
  • A pond has a minnow population of 20000 that is increasing at a rate of 5%
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!