<span>1.Describe how the graph of y = x2 can be transformed to the graph of the given equation.
y = (x+17)2
Shift the graph of y = x2 left 17 units.
2.Describe how the graph of y= x2 can be transformed to the graph of the given equation.
y = (x-4)2-8
Shift the graph of y = x2 right 4 units and then down 8 units.
.Describe how to transform the graph of f into the graph of g.
f(x) = x2 and g(x) = -(-x)2
Reflect the graph of f across the y-axis and then reflect across the x-axis.
Question 4 (Multiple Choice Worth 2 points)
Describe how the graph of y= x2 can be transformed to the graph of the given equation.
y = x2 + 8
Shift the graph of y = x2 up 8 units.
Question 5 (Essay Worth 2 points)
Describe the transformation of the graph of f into the graph of g as either a horizontal or vertical stretch.
f as a function of x is equal to the square root of x and g as a function of x is equal to 8 times the square root of x
f(x) = √x, g(x) = 8√x
vertical stretch factor 8
Plz mark as brainlest</span>
Answer:
C)
Step-by-step explanation:
- π can be added to π to get a rational number
π + (-π) = 0
0 is a rational number
A- none because they are parallel lines
54 rounded to the nearest 10 would be 50 because 54 is closer to 50 than 60.
So, the answer is 50.
Hope it helps