Answer:
K=J+6/2
Step-by-step explanation:
J= -2(3-k)
simplify whats in the bracket
J= -6+2k
J+6=2k
Divide both sides by 2
J+6/2=2k/2
2 and 2 will cancel out
remaining K
So, Therefore K=J+6/2
Hope it Helped
Answer:
So 60% of this unknown number is 28
Let this unknown number be n
60/100 × n = 28
0.60 × n = 28
n = 28/0.6
n = 46.7
To the nearest wholw number is 47
So there are 47 votes in total
1) Compound interest formula:
**<span>
**A = amount, P = principal amount, r = rate, n = # of times interest is compunded every year, t = time(in years)
2) Plug numbers in
</span>

3) Solve
A = 635.24458054
Hope this helped! Good Luck!
Answer:
75,000
Step-by-step explanation:
15,000x5=75,000
Answer:
Part a. t = 7.29 years.
Part b. t = 27.73 years.
Part c. p = $3894.00
Step-by-step explanation:
The formula for continuous compounding is: A = p*e^(rt); where A is the amount after compounding, p is the principle, e is the mathematical constant (2.718281), r is the rate of interest, and t is the time in years.
Part a. It is given that p = $2000, r = 2.5%, and A = $2400. In this part, t is unknown. Therefore: 2400 = 2000*e^(2.5t). This implies 1.2 = e^(0.025t). Taking natural logarithm on both sides yields ln(1.2) = ln(e^(0.025t)). A logarithmic property is that the power of the logarithmic expression can be shifted on the left side of the whole expression, thus multiplying it with the expression. Therefore, ln(1.2) = 0.025t*ln(e). Since ln(e) = 1, and making t the subject gives t = ln(1.2)/0.025. This means that t = 7.29 years (rounded to the nearest 2 decimal places)!!!
Part b. It is given that p = $2000, r = 2.5%, and A = $4000. In this part, t is unknown. Therefore: 4000 = 2000*e^(2.5t). This implies 2 = e^(0.025t). Taking natural logarithm on both sides yields ln(2) = ln(e^(0.025t)). A logarithmic property is that the power of the logarithmic expression can be shifted on the left side of the whole expression, thus multiplying it with the expression. Therefore, ln(2) = 0.025t*ln(e). Since ln(e) = 1, and making t the subject gives t = ln(2)/0.025. This means that t = 27.73 years (rounded to the nearest 2 decimal places)!!!
Part c. It is given that A = $5000, r = 2.5%, and t = 10 years. In this part, p is unknown. Therefore 5000 = p*e^(0.025*10). This implies 5000 = p*e^(0.25). Making p the subject gives p = 5000/e^0.25. This means that p = $3894.00(rounded to the nearest 2 decimal places)!!!