1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
qaws [65]
3 years ago
14

Find the area of the circle. Leave your answer in terms of T.

Mathematics
2 answers:
WITCHER [35]3 years ago
8 0

Answer:

I think it's C if it's not C i'm sorry

Step-by-step explanation:

castortr0y [4]3 years ago
8 0
C I hope this helped!
You might be interested in
Help help please? i need it
vichka [17]

Answer:

C, $12

Step-by-step explanation:

Every hour worked the employee earns $12. This is a fixed rate and the answer is shown in the 1st slot of the table -- 1 hour = $12

7 0
3 years ago
Read 2 more answers
The given matrix is the augmented matrix for a linear system. Use technology to perform the row operations needed to transform t
shtirl [24]

Answer:

x_{1} = \frac{176}{127} + \frac{71}{127}x_{4}\\\\ x_{2} = \frac{284}{127} + \frac{131}{254}x_{4}\\\\x_{3} = \frac{845}{127} + \frac{663}{254}x_{4}\\

Step-by-step explanation:

As the given Augmented matrix is

\left[\begin{array}{ccccc}9&-2&0&-4&:8\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]

Step 1 :

r_{1}↔r_{1} - r_{2}

\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\8&12&-6&5&:-2\end{array}\right]

Step 2 :

r_{3}↔r_{3} - 8r_{1}

\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&7&-1&-1&:9\\0&124&-54&77&:-82\end{array}\right]

Step 3 :

r_{2}↔\frac{r_{2}}{7}

\left[\begin{array}{ccccc}1&-14&6&-9&:10\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&124&-54&77&:-82\end{array}\right]

Step 4 :

r_{1}↔r_{1} + 14r_{2} , r_{3}↔r_{3} - 124r_{2}

\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&- \frac{254}{7} &\frac{663}{7} &:-\frac{1690}{7} \end{array}\right]

Step 5 :

r_{3}↔\frac{r_{3}. 7}{254}

\left[\begin{array}{ccccc}1&0&4&-11&:-8\\0&1&-\frac{1}{7} &-\frac{1}{7} &:\frac{9}{7} \\0&0&1&-\frac{663}{254} &:-\frac{1690}{254} \end{array}\right]

Step 6 :

r_{1}↔r_{1} - 4r_{3} , r_{2}↔r_{2} + \frac{1}{7} r_{3}

\left[\begin{array}{ccccc}1&0&0&-\frac{71}{127} &:\frac{176}{127} \\0&1&0&-\frac{131}{254} &:\frac{284}{127} \\0&0&1&-\frac{663}{254} &:\frac{845}{127} \end{array}\right]

∴ we get

x_{1} = \frac{176}{127} + \frac{71}{127}x_{4}\\\\ x_{2} = \frac{284}{127} + \frac{131}{254}x_{4}\\\\x_{3} = \frac{845}{127} + \frac{663}{254}x_{4}\\

6 0
3 years ago
Please find the derivative of <img src="https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Be%5E%7B%5Cfrac%7B3%7D%7Bx%7D%7D%7D%7
sesenic [268]

Hello! :)

\large\boxed{\frac{-e^{\frac{3}{x}}  (3 + 2x )}{x^{4}}}

Find the derivative using the quotient rule:

\frac{f(x)}{g(x)} = \frac{g(x) * f'(x) - f(x) * g'(x)}{(g(x))^{2}}

In this instance:

f(x) = e^{\frac{3}{x} }\\\\g(x) = x^{2}

Use the following properties to find the derivative of f(x) and g(x):

e^{u} = u' * e^{u}\\\\x^{n} = nx^{n-1}

Use the quotient rule:

\frac{x^{2} * (e^{\frac{3}{x}} * (-3x^{-2})) - e^{\frac{3}{x}} * 2x  }{(x^{2} )^{2}}

Simplify the numerator:

\frac{(e^{\frac{3}{x}} * (-3)) - e^{\frac{3}{x}} * 2x  }{(x^{2} )^{2}}

Factor out e^{\frac{3}{x}}

\frac{e^{\frac{3}{x}}  (-3 - 2x )}{x^{4}}

Factor out -1 from the numerator:

\frac{-e^{\frac{3}{x}}  (3 + 2x )}{x^{4}}

And we're done! Thanks for posting the question to my 1000th answer!

7 0
3 years ago
Read 2 more answers
Jack and his children went into a restaurant where they sell hamburgers for $6 each and tacos for $2 each. Jack has $30 to spend
irina [24]
128..........................................
4 0
3 years ago
Read 2 more answers
If a = 2 cm and r = 3.4 cm, find the area of the regular pentagon.
cricket20 [7]

Answer:

Area = 3.4\ cm^{2}

Step-by-step explanation:

Assume a pentagon has equal length where a be the side of the pentagon and r be the apothem of the pentagon.

Given:

Sides of pentagon a=2\ cm

apothem of pentagon r=3.4\ cm

The area of the pentagon formula is given below.

A = \frac{1}{2}\times bh

Where b = length of the base or side

And h = height of apothem

Now, we substitute side and apothem length in above formula.

A = \frac{1}{2}\times 2\times 3.4

A = 3.4\ cm^{2}

Therefore, the area of the pentagon is 3.4\ cm^{2}

3 0
3 years ago
Other questions:
  • WILL GIVE A BRAINLIEST TO THE CORRECT ANSWER!!
    11·1 answer
  • 4 x 754 using two different methods
    6·1 answer
  • What is 
    6·1 answer
  • 2/3,4/9,2/-3,6/9 which of these are equivalent to - 2/3
    11·2 answers
  • Tell whether the study is an experimental study or an observational study.
    14·1 answer
  • Use the graph to evaluate the function.<br> f(-5) =<br> y<br> -8 -6
    5·1 answer
  • Clare is using little wooden cubes with edge length 1/2 inch to build a larger cube that has edge length 4 inches. How many litt
    12·2 answers
  • A) |9+x|=2x<br> b) |x+6|=2x+9
    8·1 answer
  • HELPPPPP MEEEEE PLEASEEEEEEE IM BEGGING
    5·1 answer
  • PLS HELP ASAP ILL GIVE BRAINLKEST THANKS
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!