1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aniked [119]
3 years ago
13

Please find the derivative of

Bx%5E2%7D" id="TexFormula1" title="\displaystyle \frac{e^{\frac{3}{x}}}{x^2}" alt="\displaystyle \frac{e^{\frac{3}{x}}}{x^2}" align="absmiddle" class="latex-formula">. Show all work necessary - thanks!
Mathematics
2 answers:
sesenic [268]3 years ago
7 0

Hello! :)

\large\boxed{\frac{-e^{\frac{3}{x}}  (3 + 2x )}{x^{4}}}

Find the derivative using the quotient rule:

\frac{f(x)}{g(x)} = \frac{g(x) * f'(x) - f(x) * g'(x)}{(g(x))^{2}}

In this instance:

f(x) = e^{\frac{3}{x} }\\\\g(x) = x^{2}

Use the following properties to find the derivative of f(x) and g(x):

e^{u} = u' * e^{u}\\\\x^{n} = nx^{n-1}

Use the quotient rule:

\frac{x^{2} * (e^{\frac{3}{x}} * (-3x^{-2})) - e^{\frac{3}{x}} * 2x  }{(x^{2} )^{2}}

Simplify the numerator:

\frac{(e^{\frac{3}{x}} * (-3)) - e^{\frac{3}{x}} * 2x  }{(x^{2} )^{2}}

Factor out e^{\frac{3}{x}}

\frac{e^{\frac{3}{x}}  (-3 - 2x )}{x^{4}}

Factor out -1 from the numerator:

\frac{-e^{\frac{3}{x}}  (3 + 2x )}{x^{4}}

And we're done! Thanks for posting the question to my 1000th answer!

jekas [21]3 years ago
6 0

Answer:

\displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}}}{x^4} - \frac{2e^{\frac{3}{x}}}{x^3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Splitting Fractions

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring
  • Exponential Rule [Multiplying]: \displaystyle b^m \cdot b^n = b^{m + n}

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule:    \displaystyle \frac{d}{dx} [e^u]=e^u \cdot u'

Quotient Rule:      \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle \frac{e^{\frac{3}{x}}}{x^2}\\f(x) = e^{\frac{3}{x}}\\g(x) = x^2<u />

<u />

<u>Step 2: Differentiate</u>

  1. Quotient Rule:                                                                                                \displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{\frac{d}{dx}[e^{\frac{3}{x}}] \cdot x^2 - \frac{d}{dx}[x^2] \cdot e^{\frac{3}{x}}}{(x^2)^2}
  2. Derivative Rule:                                                                                              \displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{e^{\frac{3}{x}} \cdot \frac{-3}{x^2} \cdot x^2 - \frac{d}{dx}[x^2] \cdot e^{\frac{3}{x}}}{(x^2)^2}
  3. [Simplify] Multiply:                                                                                           \displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - \frac{d}{dx}[x^2] \cdot e^{\frac{3}{x}}}{(x^2)^2}
  4. Basic Power Rule:                                                                                          \displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2x^{2-1} \cdot e^{\frac{3}{x}}}{(x^2)^2}
  5. [Simplify] Subtract Exponents:                                                                       \displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2x \cdot e^{\frac{3}{x}}}{(x^2)^2}
  6. [Simplify] Multiply:                                                                                           \displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2xe^{\frac{3}{x}}}{(x^2)^2}
  7. [Simplify] Exponent Rule:                                                                               \displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2xe^{\frac{3}{x}}}{x^{2 + 2}}
  8. [Simplify] Add Exponents:                                                                              \displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}} - 2xe^{\frac{3}{x}}}{x^4}
  9. [Simplify] Fraction Split:                                                                                  \displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}}}{x^4} - \frac{2xe^{\frac{3}{x}}}{x^4}
  10. [Simplify - 2nd Fraction] Cancel Like Terms:                                                \displaystyle \frac{d}{dx}[\frac{e^{\frac{3}{x}}}{x^2}] = \frac{-3e^{\frac{3}{x}}}{x^4} - \frac{2e^{\frac{3}{x}}}{x^3}

And we have our final answer!

You might be interested in
write the particular equation of this transformed sine graph. assume that the horizontal shift is 1 unit to the right. (hint: tr
Goryan [66]
We are given the graph of sine function.
First, we get the amplitude
A = [6 - (-2)] / 2
A = 4

Next, we determine the period and b
T = 4 - 0 = 4
b = 2π / T
b = π/2

The original sine function was
y = 4 sin πx/2

After the transformation, the equation now is
y = 4 sin [π(x+2)/2] + 2
4 0
3 years ago
Read 2 more answers
Solve for p: a = 2πpw
MaRussiya [10]
Hello there.

<span>Solve for p: a = 2πpw

</span>\frac{a}{6.283185w&#10;}
4 0
3 years ago
Please help me im stuck
agasfer [191]
Multiply 3 by 2 and you get six I think
8 0
3 years ago
If f(x)=4x+5 , what is f(-3) and f(3)<br> A 4 and 5 <br> B -7 and 17<br> C -3 and 3<br> D -17 and 7
nikdorinn [45]
Answer:
B. -7 and 17

Explanation:
Plug in the given number for x.
f(3)=4(3)+5
=12+5
=17

f(-3)=4(-3)+5
=-12+5
= -7
8 0
3 years ago
Read 2 more answers
Make the following conversion. 240 hm = ____ m 2.40 0.240 24,000 240,000
balu736 [363]

100 meters in a hectometers   So basically 1hectameter=100 meters   240hm=240(100)=24,000 meters

3 0
3 years ago
Read 2 more answers
Other questions:
  • A friend creates an IRA (Individual retirement account) with an APR of 6.25%. She starts the IRA at the age of 25 and deposits $
    9·2 answers
  • Sandi had the following problem on her math test:6•4+2÷2-7
    9·1 answer
  • I need help with this math question on my study guide!
    8·1 answer
  • What’s an equation for<br> Five times a number
    11·2 answers
  • 70 points!! A conjecture and the flowchart proof used to prove the conjecture are shown.
    5·2 answers
  • 17. Simplify (3 × 22) ÷ 6 + [28 – (4)2] = ?
    10·1 answer
  • Please provide answer and explanation !!
    9·1 answer
  • Fred sold half of his comic books and then bought 8 more he now has 16 how many did begin with
    15·2 answers
  • Write 11/75 as a decimal
    11·2 answers
  • If x +3.5 =14.25 then how can i find x
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!