i would probably use an iv or a blood simple
Answer:
transposition method
Step-by-step explanation:
it helps to find that value of y
Answer:
Step-by-step explanation:
28
I think it would have to equal a fraction being -4/3
well then, the volume of the nose cone will just be the sum of the volume of the cylinder below and the cone above.
since the diameter for both is 8, then their radius is half that, or 4.
![\bf \stackrel{\textit{volume of a cone}}{V=\cfrac{\pi r^2 h}{3}}~~ \begin{cases} r=radius\\ h=height\\ \cline{1-1} r=4\\ h=6 \end{cases}\implies V=\cfrac{\pi (4)^2(6)}{3}\implies V=32\pi \\\\\\ \stackrel{\textit{volume of a cylinder}}{V=\pi r^2 h}~~ \begin{cases} r=radius\\ h=height\\ \cline{1-1} r=4\\ h=6 \end{cases}\implies V=\pi (4)^2(6)\implies V=96\pi \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{volume of the nose cone}}{32\pi +96\pi \implies 128\pi }\qquad \approx \qquad 402.12](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%20cone%7D%7D%7BV%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%20%5Ccline%7B1-1%7D%20r%3D4%5C%5C%20h%3D6%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%284%29%5E2%286%29%7D%7B3%7D%5Cimplies%20V%3D32%5Cpi%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20a%20cylinder%7D%7D%7BV%3D%5Cpi%20r%5E2%20h%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%20%5Ccline%7B1-1%7D%20r%3D4%5C%5C%20h%3D6%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Cpi%20%284%29%5E2%286%29%5Cimplies%20V%3D96%5Cpi%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bvolume%20of%20the%20nose%20cone%7D%7D%7B32%5Cpi%20%2B96%5Cpi%20%5Cimplies%20128%5Cpi%20%7D%5Cqquad%20%5Capprox%20%5Cqquad%20402.12)