Answer:
96 in^2
Step-by-step explanation:
area of rectangle: 24*8=192
Area of triangle: (1/2)*base*height
= .5 * 8 * 24
=192/2
=96
area of shaded=rectangle - triangle
= 192-96
which is also just 192/2
so it is 96
Y = mx + b
where m is the gradient (slope)
-4y = 11 - 8x
4y = 8x - 11
y = 2x - 11/4
m = 2
The correct answer is A.
Answer:
95.64% probability that pledges are received within 40 days
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that pledges are received within 40 days
This is the pvalue of Z when X = 40. So



has a pvalue of 0.9564
95.64% probability that pledges are received within 40 days
<h3>Corresponding angles =
angle 1 and angle 5</h3>
They are on the same side of the transversal cut (both to the left of the transversal) and they are both above the two black lines. It might help to make those two black lines to be parallel, though this is optional.
Other pairs of corresponding angles could be:
- angle 2 and angle 6
- angle 3 and angle 7
- angle 4 and angle 8
=======================================================
<h3>Alternate interior angles = angle 3 and angle 5</h3>
They are between the black lines, so they are interior angles. They are on alternate sides of the blue transversal, making them alternate interior angles.
The other pair of alternate interior angles is angle 4 and angle 6.
=======================================================
<h3>Alternate exterior angles = angle 1 and angle 7</h3>
Similar to alternate interior angles, but now we're outside the black lines. The other pair of alternate exterior angles is angle 2 and angle 8
=======================================================
<h3>Same-side interior angles = angle 3 and angle 6</h3>
The other pair of same-side interior angles is angle 4 and angle 5. They are interior angles, and they are on the same side of the transversal.