1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Xelga [282]
2 years ago
14

5x + 2y = 7 7x + 6y = -3 Please solve using elimination method.

Mathematics
1 answer:
Kazeer [188]2 years ago
3 0
X=3 y=-4
hope that helps
You might be interested in
What is the scale factor from ABC to DEF?
Dmitry_Shevchenko [17]

Answer:

3

Step-by-step explanation:

3 to get to 15, multiply by 3, same for other sides.

8 0
2 years ago
What sum will amount to rupees 4000 in 3 years at 6% p.a. compound interest​
natali 33 [55]

Answer:

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Given:}}}}}}}\end{gathered}

  • ⇢ Principle = Rs.4000
  • ⇢ Rate = 6%
  • ⇢ Time = 3 year

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{To Find:}}}}}}}\end{gathered}

  • ⇢ Amount

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Using Formula:}}}}}}}\end{gathered}

{\dag{\underline{\boxed{\sf{Amount  ={P{\bigg(1 + \dfrac{R}{100}{\bigg)}^{T}}}}}}}}

\dag{\underline{\boxed{\sf{Compound \: Interest = Amount- Principle }}}}

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Solution:}}}}}}}\end{gathered}

{\bigstar \:{\underline{\pmb{\frak{\red{Firstly,Finding  \: the  \: Amount }}}}}}

\quad {:\implies{\sf{Amount  = \bf{P{\bigg(1  +  \dfrac{R}{100}{\bigg)}^{T}}}}}}

  • Substituting the values

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg(1  +  \dfrac{6}{100}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg(1 \times 100  +  \dfrac{6}{100}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{100 + 6}{100}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{106}{100}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg({\cancel{\dfrac{106}{100}}{\bigg)}}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{53}{50}{\bigg)}^{3}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{53}{50} \times \dfrac{53}{50} \times \dfrac{53}{50}{\bigg)}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000{\bigg( \dfrac{148877}{125000}{\bigg)}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4000 \times  \dfrac{148877}{125000}}}}}

\quad {:\implies{\sf{Amount  = \bf{4{\cancel{000}} \times  \dfrac{148877}{125{\cancel{000}}}}}}}

\quad {:\implies{\sf{Amount  = \bf{\dfrac{148877 \times 4}{125}}}}}

\quad {:\implies{\sf{Amount  = \bf{\dfrac{595508}{125}}}}}

\quad {:\implies{\sf{Amount  = \bf{\cancel{\dfrac{595508}{125}}}}}}

\quad {:\implies{\sf{Amount  = \bf{4764.064}}}}

\begin{gathered} \dag{\boxed{\textsf{\textbf{\underline{\color{green}{Amount = {Rs.4764.064}}}}}}}\end{gathered}

  • Hence, The Amount is Rs.4764.064

\begin{gathered}\end{gathered}

{\bigstar \:{\underline{\pmb{\frak{\red{ Now,Finding  \: The \:  Compound \:  Interest }}}}}}

\quad{: \implies{\sf{Compound \: Interest =  \bf{Amount- Principle }}}}

  • Substituting the values

\quad{: \implies{\sf{Compound \: Interest = \bf{4764.064- 4000 }}}}

\quad{: \implies{\sf{Compound \: Interest =\bf{764.064}}}}

\begin{gathered} \dag{\boxed{\textsf{\textbf{\underline{\color{green}{Compound Interest  = Rs.764.064}}}}}}\end{gathered}

  • Henceforth,The Compound Interest is Rs.764064

\begin{gathered}\end{gathered}

\begin{gathered}{\Large{\textsf{\textbf{\underline{\underline{\color{purple}{Learn More:}}}}}}}\end{gathered}

\begin{gathered}\begin{gathered}\begin{gathered} \dag \: \underline{\bf{More \: Useful \: Formula}}\\ {\boxed{\begin{array}{cc}\dashrightarrow {\sf{Amount = Principle + Interest}} \\ \\ \dashrightarrow \sf{ P=Amount - Interest }\\ \\ \dashrightarrow \sf{ S.I = \dfrac{P \times R \times T}{100}} \\ \\ \dashrightarrow \sf{P = \dfrac{Interest \times 100 }{Time \times Rate}} \\ \\ \dashrightarrow \sf{P = \dfrac{Amount\times 100 }{100 + (Time \times Rate)}} \\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}

8 0
3 years ago
Add the two expressions.<br><br> 2x + 6 and 6x−1
Mamont248 [21]
The answer should be 8x+5
6 0
3 years ago
Read 2 more answers
Evaluate<br> -6(2) = [?]
professor190 [17]

Answer:

afkdtusttdd worksheet Albertsons Prescott keeps given

8 0
3 years ago
Read 2 more answers
At Picture Perfect Pizza the price for 2 slices of pizza is $3.00. At Pizza Outpost
Marizza181 [45]

Answer:

You will save $2 if you buy from Picture Perfect Pizza instead of Pizza Outpost.

Step-by-step explanation:

First we need to find the unit rate of each pizza from each pizza place.

Picture Perfect Pizza: $3÷2 = $1.50

Pizza Outpost: $7÷4 = $1.75

Picture Perfect Pizza: $1.5 * 8 = $12

Pizza Outpost: $1.75*8 = $14

6 0
2 years ago
Other questions:
  • Describe when it would be more useful to represent a linear relationship with an equation then with a graph
    7·1 answer
  • Find the discriminant of 5x^2+3x-5=0 for x
    8·2 answers
  • Lechie has 21 crystals in her collection. Her brother Tomer has 7 crystals. How many more crystals does Lechie have than Tomer?
    7·2 answers
  • I need help<br><br><br><br><br> can u sub<br><br><br> 1+2=
    7·1 answer
  • Emma buys packets of coloured beads.
    5·1 answer
  • What is the diameter of a sphere with a volume of 6329\text{ ft}^3,6329 ft
    13·1 answer
  • Jethro is planting flowers in his garden. He wants the ratio of tulips to roses to be 5 to 1. Jethro wants to plant a total of 4
    12·1 answer
  •  The sum of the measures of the exterior angles of a regular 5-gon, one at each vertex, is __________ the sum of the measures of
    13·1 answer
  • (233556678.45/111656)*2
    13·1 answer
  • Help me please me please
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!