Answer:
1. Proved down
2. proved down
3. f(10) = -20 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5
Step-by-step explanation:
Let us explain how to solve the question
∵ f(0) = -20, f(n) = f(n - 1) - 5 for n > 1
→ That means we have an arithmetic sequence with constant
difference -5 and first term -20
1. → f(1) means we need to find the second term, which equal the
term - 5
∵ f(1) means n = 1
∴ f(1) = f(1 - 1) - 5
∴ f(1) = f(0) - 5
∵ f(0) = -20
∴ f(1) = -20 - 5 → Proved
2. → f(3) means we need to find the third term, which equal the
second term - 5
∵ f(3) means n = 3
∴ f(3) = f(3 - 1) - 5
∴ f(3) = f(2) - 5
→ f(2) = f(1) - 5
∵ f(1) = -20 - 5
∴ f(2) = [-20 - 5] - 5 = -20 - 5 - 5
∴ f(3) = [-20 - 5 - 5] - 5
∴ f(3) = -20 - 5 - 5 - 5 → Proved
3. → From 1 and 2 we notice that the number of -5 is equal to n,
at n = 1 there is one (-5), when n= 3 there are three (-5)
∵ n = 10
∴ There are ten (-5)
∴ f(10) = -20 - 5(10)
∴ f(10) = -20 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 → Proved
Answer:
x=-2.2 y=-1.6
Step-by-step explanation:
8x+y=-16
-3x+y=5
5x=-11
x=-11/5 or -2.2
-3x+y=5
-3(-2.2)+y=5
6.6+y=5
-6.6+y=-6.6
y=-1.6
Hey there!:)
b1+b2
--------- x h =area
2
(3+5)/2h=area
8/2h=area
4(2)=area
area= 8ft squared (this is your answer)
Hope this helps! Let me know if you need more help:)
The minimum value of a function is the place where the graph has a vertex at its lowest point.
There are two methods for determining the minimum value of a quadratic equation. Each of them can be useful in determining the minimum.
(1) By plotting graph
We can find the minimum value visually by graphing the equation and finding the minimum point on the graph. The y-value of the vertex of the graph will be the minimum.
(2) By solving equation
The second way to find the minimum value comes when we have the equation y = ax² + bx + c.
If our equation is in the form y = ax^2 + bx + c, you can find the minimum by using the equation min = c - b²/4a.
The first step is to determine whether your equation gives a maximum or minimum. This can be done by looking at the x² term.
If this term is positive, the vertex point will be a minimum; if it is negative, the vertex will be a maximum.
After determining that we actually will have a minimum point, use the equation to find it.
Both solutions:
x = -1, -7/3