Answer:
11.2
Step-by-step explanation:
well i'm guessing that you didn't finish you parenthesis and if you did they would be around the 0 and 3 so 3 plus 0 is 3 and 3 plus 8.2 is 11.2 so I believe your answer is 11.2. Sorry if it is wrong the question didn't really make sense.
Please mark brainliest
The quadratic equations and their solutions are;
9 ± √33 /4 = 2x² - 9x + 6.
4 ± √6 /2 = 2x² - 8x + 5.
9 ± √89 /4 = 2x² - 9x - 1.
4 ± √22 /2 = 2x² - 8x - 3.
Explanation:
- Any quadratic equation of the form, ax² + bx + c = 0 can be solved using the formula x = -b ± √b² - 4ac / 2a. Here a, b, and c are the coefficients of the x², x, and the numeric term respectively.
- We have to solve all of the five equations to be able to match the equations with their solutions.
- 2x² - 8x + 5, here a = 2, b = -8, c = 5. x = -b ± √b² - 4ac / 2a = -(-8) ± √(-8)² - 4(2)(5) / 2(2) = 8 ± √64 - 40/4. 24 can also be written as 4 × 6 and √4 = 2. So x = 8 ± 2√6 / 2×2= 4±√6/2.
- 2x² - 10x + 3, here a = 2, b = -10, c = 3. x =-b ± √b² - 4ac / 2a =-(-10) ± √(-10)² - 4(2)(3) / 2(4) = 10 ± √100 + 24/4. 124 can also be written as 4 × 31 and √4 = 2. So x = 10 ± 2√31 / 2×2 = 5 ± √31 /2.
- 2x² - 8x - 3, here a = 2, b = -8, c = -3. x = -b ± √b² - 4ac / 2a = -(-8) ± √(-8)² - 4(2)(-3) / 2(2) = 8 ± √64 + 24/4. 88 can also be written as 4 × 22 and √4 = 2. So x = 8 ± 2√22 / 2×2 = 4± √22/2.
- 2x² - 9x - 1, here a = 2, b = -9, c = -1. x = -b ± √b² - 4ac / 2a = -(-9) ± √(-9)² - 4(2)(-1) / 2(2) = 9 ± √81 + 8/4. x = 9 ± √89 / 4.
- 2x² - 9x + 6, here a = 2, b = -9, c = 6. x = -b ± √b² - 4ac / 2a = -(-9) ± √(-9)² - 4(2)(6) / 2(2) = 9 ± √81 - 48/4. x = 9 ± √33 / 4 .
Answer:
help is for the weak as said my I, the one true burnt chicken nugget
Step-by-step explanation:
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
<u>Calculus</u>
Implicit Differentiation
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule: ![\frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Quotient Rule: ![\frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
-xy - 2y = -4
Rate of change of the tangent line at point (-1, 4)
<u>Step 2: Differentiate Pt. 1</u>
<em>Find 1st Derivative</em>
- Implicit Differentiation [Product Rule/Basic Power Rule]:

- [Algebra] Isolate <em>y'</em> terms:

- [Algebra] Factor <em>y'</em>:

- [Algebra] Isolate <em>y'</em>:

- [Algebra] Rewrite:

<u>Step 3: Find </u><em><u>y</u></em>
- Define equation:

- Factor <em>y</em>:

- Isolate <em>y</em>:

- Simplify:

<u>Step 4: Rewrite 1st Derivative</u>
- [Algebra] Substitute in <em>y</em>:

- [Algebra] Simplify:

<u>Step 5: Differentiate Pt. 2</u>
<em>Find 2nd Derivative</em>
- Differentiate [Quotient Rule/Basic Power Rule]:
![y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}](https://tex.z-dn.net/?f=y%27%27%20%3D%20%5Cfrac%7B0%28x%2B2%29%5E2%20-%208%20%5Ccdot%202%28x%20%2B%202%29%20%5Ccdot%201%7D%7B%5B%28x%20%2B%202%29%5E2%5D%5E2%7D)
- [Derivative] Simplify:

<u>Step 6: Find Slope at Given Point</u>
- [Algebra] Substitute in <em>x</em>:

- [Algebra] Evaluate:
