1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
3 years ago
12

What is the length of the line segment between point (-5,8) and point (-5,-4).

Mathematics
2 answers:
dedylja [7]3 years ago
6 0

Answer:

12 would be the distance between the two points

Step-by-step explanation:

miss Akunina [59]3 years ago
4 0

Answer:

The y-coordinates are the same, so the length of this horizontal line segment is the difference between the x-coordinates.

Length = 7 - (-5) = 12 units

Step-by-step explanation:

You might be interested in
Evaluate<br> 8.2+(3+0<br> ——<br> 3
jenyasd209 [6]

Answer:

11.2

Step-by-step explanation:

well i'm guessing that you didn't finish you parenthesis and if you did they would be around the 0 and 3 so 3 plus 0 is 3 and 3 plus 8.2 is 11.2 so I believe your answer is 11.2.  Sorry if it is wrong the question didn't really make sense.

Please mark brainliest

5 0
3 years ago
Solve for x. Round your answer to the nearest hundredth.
Vinil7 [7]

Answer:

14: 2x-1 = 3

2x=4

x=2

15:

x = 1/2500000

16: (ln(4/3))/4

17: sqrt(5e^12)

18: x = 16, -4

3 0
3 years ago
Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used. Match each quadratic equation with its so
Anon25 [30]

The quadratic equations and their solutions are;

9 ± √33 /4 = 2x² - 9x + 6.

4 ± √6 /2 = 2x² - 8x + 5.

9 ± √89 /4 = 2x² - 9x - 1.

4 ± √22 /2 = 2x² - 8x - 3.

Explanation:

  • Any quadratic equation of the form, ax² + bx + c = 0 can be solved using the formula x = -b ± √b² - 4ac / 2a. Here a, b, and c are the coefficients of the x², x, and the numeric term respectively.
  • We have to solve all of the five equations to be able to match the equations with their solutions.
  • 2x² - 8x + 5, here a = 2, b = -8, c = 5.                                                  x = -b ± √b² - 4ac / 2a = -(-8) ± √(-8)² - 4(2)(5) / 2(2) = 8 ± √64 - 40/4.     24 can also be written as 4 × 6 and √4 = 2. So                                                                                     x = 8 ± 2√6 / 2×2= 4±√6/2.
  • 2x² - 10x + 3, here a = 2, b = -10, c = 3.                                                   x =-b ± √b² - 4ac / 2a =-(-10) ± √(-10)² - 4(2)(3) / 2(4) = 10 ± √100 + 24/4. 124 can also be written as 4 × 31 and √4 = 2. So                                                                              x = 10 ± 2√31 / 2×2 = 5 ± √31 /2.
  • 2x² - 8x - 3, here a = 2, b = -8, c = -3.                                                    x = -b ± √b² - 4ac / 2a = -(-8) ± √(-8)² - 4(2)(-3) / 2(2) = 8 ± √64 + 24/4.     88 can also be written as 4 × 22 and √4 = 2. So                                                                             x = 8 ± 2√22 / 2×2 = 4± √22/2.
  • 2x² - 9x - 1, here a = 2, b = -9, c = -1.                                                     x = -b ± √b² - 4ac / 2a = -(-9) ± √(-9)² - 4(2)(-1) / 2(2) = 9 ± √81 + 8/4.                                          x = 9 ± √89 / 4.
  • 2x² - 9x + 6, here a = 2, b = -9, c = 6.                                                    x = -b ± √b² - 4ac / 2a = -(-9) ± √(-9)² - 4(2)(6) / 2(2) = 9 ± √81 - 48/4.                                                                             x = 9 ± √33 / 4 .

8 0
3 years ago
Read 2 more answers
Can someone help???​
inn [45]

Answer:

help is for the weak as said my I, the one true burnt chicken nugget

Step-by-step explanation:

5 0
3 years ago
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
Other questions:
  • How do you break apart the factor 58 using place value?
    15·1 answer
  • Which formula is best used to prove that a figure has congruent sides?
    7·1 answer
  • A linear equation has more than one y intercept.what can you conclude about the graph of the equation?
    15·2 answers
  • Pls can someone help
    7·2 answers
  • Solve 100 ÷ 5 × 4 + 4³.<br><br> A. 69<br> B. 144<br> C. 0.3<br> D. 1.2
    13·1 answer
  • The cost of renting a boat for different
    11·1 answer
  • Please help I would really appreciate it. No fake links please
    7·2 answers
  • I need help please!!!!!!!!!!!!!!
    9·2 answers
  • Anyone know the answer to this?
    10·1 answer
  • Translate this sentence into an equation. 40 is the sum of 21 and ricks age? use the variable are to represent ricks age.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!