Answer:
74.71%
Step-by-step explanation:
To calculate the experimental probability of the next scoop that they sell being vanilla, we need to divide the amount of scoops of ice cream that were vanilla (65 scoops) by the total amount of scoops of ice cream sold (87 scoops):
Probability of next scoop being vanilla = 65 / 87 = 0.7471 = 74.71%
The experimental probability of the next scoop they sell being vanilla is 74.71%.
so the points are, from P1 to P2, namely P1P2, and from P2 to P3, namely P2P3, and from P3 back to P1, namely P3P1.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ P1(\stackrel{x_1}{5}~,~\stackrel{y_1}{-4})\qquad P2(\stackrel{x_2}{8}~,~\stackrel{y_2}{-3})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ P1P2=\sqrt{[8-5]^2+[-3-(-4)]^2}\implies P1P2=\sqrt{(8-5)^2+(-3+4)^2} \\\\\\ P1P2=\sqrt{3^2+1^2}\implies \boxed{P1P2=\sqrt{10}}\\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%20%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20P1%28%5Cstackrel%7Bx_1%7D%7B5%7D~%2C~%5Cstackrel%7By_1%7D%7B-4%7D%29%5Cqquad%20%20P2%28%5Cstackrel%7Bx_2%7D%7B8%7D~%2C~%5Cstackrel%7By_2%7D%7B-3%7D%29%5Cqquad%20%5Cqquad%20%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20P1P2%3D%5Csqrt%7B%5B8-5%5D%5E2%2B%5B-3-%28-4%29%5D%5E2%7D%5Cimplies%20P1P2%3D%5Csqrt%7B%288-5%29%5E2%2B%28-3%2B4%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20P1P2%3D%5Csqrt%7B3%5E2%2B1%5E2%7D%5Cimplies%20%5Cboxed%7BP1P2%3D%5Csqrt%7B10%7D%7D%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%20)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ P2(\stackrel{x_2}{8}~,~\stackrel{y_2}{-3})\qquad P3(\stackrel{x_2}{7}~,~\stackrel{y_2}{-10}) \\\\\\ P2P3=\sqrt{[7-8]^2+[-10-(-3)]^2}\implies P2P3=\sqrt{(7-8)^2+(-10+3)^2} \\\\\\ P2P3=\sqrt{(-1)^2+(-7)^2}\implies P2P3=\sqrt{50}\implies \boxed{P2P3=5\sqrt{2}}\\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%20%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20P2%28%5Cstackrel%7Bx_2%7D%7B8%7D~%2C~%5Cstackrel%7By_2%7D%7B-3%7D%29%5Cqquad%20%20P3%28%5Cstackrel%7Bx_2%7D%7B7%7D~%2C~%5Cstackrel%7By_2%7D%7B-10%7D%29%20%5C%5C%5C%5C%5C%5C%20P2P3%3D%5Csqrt%7B%5B7-8%5D%5E2%2B%5B-10-%28-3%29%5D%5E2%7D%5Cimplies%20P2P3%3D%5Csqrt%7B%287-8%29%5E2%2B%28-10%2B3%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20P2P3%3D%5Csqrt%7B%28-1%29%5E2%2B%28-7%29%5E2%7D%5Cimplies%20P2P3%3D%5Csqrt%7B50%7D%5Cimplies%20%5Cboxed%7BP2P3%3D5%5Csqrt%7B2%7D%7D%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%20)
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ P3(\stackrel{x_2}{7}~,~\stackrel{y_2}{-10})\qquad P1(\stackrel{x_1}{5}~,~\stackrel{y_1}{-4}) \\\\\\ P3P1=\sqrt{[5-7]^2+[-4-(-10)]^2}\implies P3P1=\sqrt{(5-7)^2+(-4+10)^2} \\\\\\ P3P1=\sqrt{(-2)^2+6^2}\implies P3P1=\sqrt{40}\implies \boxed{P3P1=2\sqrt{10}}](https://tex.z-dn.net/?f=%20%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20P3%28%5Cstackrel%7Bx_2%7D%7B7%7D~%2C~%5Cstackrel%7By_2%7D%7B-10%7D%29%5Cqquad%20%20P1%28%5Cstackrel%7Bx_1%7D%7B5%7D~%2C~%5Cstackrel%7By_1%7D%7B-4%7D%29%20%5C%5C%5C%5C%5C%5C%20P3P1%3D%5Csqrt%7B%5B5-7%5D%5E2%2B%5B-4-%28-10%29%5D%5E2%7D%5Cimplies%20P3P1%3D%5Csqrt%7B%285-7%29%5E2%2B%28-4%2B10%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20P3P1%3D%5Csqrt%7B%28-2%29%5E2%2B6%5E2%7D%5Cimplies%20P3P1%3D%5Csqrt%7B40%7D%5Cimplies%20%5Cboxed%7BP3P1%3D2%5Csqrt%7B10%7D%7D%20)
1250. Cubic feet = volume and volume is length * width * height. The volume of this would be 5x5x(1/2), which equals 12.5 cubic feet. 12.5*100=1250
Answer:
try the 3rd one
Step-by-step explanation:
if it's not right then i'm sorry
How many 22s can go into 553?