we can pretty much split the middle part into two trapezoids. Check the picture below.
so we really have one trapezoid and one square, each twice, so simply let's get the area of the trapezoid and sum it up with the area of the square, twice, and that's the area of the shape.
![\textit{area of a trapezoid}\\\\ A=\cfrac{h(a+b)}{2}~~ \begin{cases} h=height\\ a,b=\stackrel{\textit{parallel sides}}{bases}\\[-0.5em] \hrulefill\\ h=5\\ a=3\\ b=7 \end{cases}\implies A=\cfrac{5(3+7)}{2}\implies A=25 \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{sum of areas}}{[25+(3\cdot 3)]}\cdot \stackrel{twice}{2}\implies [34]2\implies \underset{in^2}{68}](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20trapezoid%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7Bh%28a%2Bb%29%7D%7B2%7D~~%20%5Cbegin%7Bcases%7D%20h%3Dheight%5C%5C%20a%2Cb%3D%5Cstackrel%7B%5Ctextit%7Bparallel%20sides%7D%7D%7Bbases%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20h%3D5%5C%5C%20a%3D3%5C%5C%20b%3D7%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B5%283%2B7%29%7D%7B2%7D%5Cimplies%20A%3D25%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bsum%20of%20areas%7D%7D%7B%5B25%2B%283%5Ccdot%203%29%5D%7D%5Ccdot%20%5Cstackrel%7Btwice%7D%7B2%7D%5Cimplies%20%5B34%5D2%5Cimplies%20%5Cunderset%7Bin%5E2%7D%7B68%7D)
Answer:
The answer is C. (1.1)
Step-by-step explanation:
Answer:
Step-by-step explanation:
Natsano can satisfy his constraints by investing the first $20,000 in Company A, then splitting the remaining $35,000 evenly between the companies. For best return, he needs to invest as much as possible in Company B, but each such dollar (after the first 20k) must be matched by a dollar invested in Company A. That is, his investments should be ...
- Company A: $37,500
- Company B: $17,500
_____
The attached graph shows the feasible region of investments (doubly shaded). The vertex that maximizes the objective function (return on investment) is the one highlighted. (It puts the objective function line as far as possible from the origin.)
_____
Sometimes graphing the constraints is more work than necessary if there is some simple logic that quickly identifies the solution.
Answer:
the second choice cause there's too many outliers the line can't be linear
True because the center is (2,1) and radius is 2