MAD (mitotic arrest deficient) are proteins related to spindle cell cycle checkpoint and it is important since they prevent the segregation of sister chromatids until all have bound to the spindle.
The cell cycle ensures the duplication of the genome and its distribution in daughter cells by passing through a coordinated and regulated sequence of events.
A series of checkpoints guarantee the orderly progression of the phases of cell division and the correct distribution of the duplicated genetic material in the daughter cells.
The checkpoints during mitosis are:
- At the end of stage G1 and before S.
- Before anaphase in mitosis.
- DNA damage checkpoints in G1, S or G2.
The checkpoint before anaphase in mitosis guarantees the separation of chromosomes, and operates by activating the Mad2 protein that prevents the degradation of segurin, until the conditions are appropriate.
That is, the Mad2 protein prevents the segregation of sister chromatids until they have all bound to the spindle.
Therefore, we can conclude that MAD (mitotic arrest deficient) are proteins related to spindle cell cycle checkpoint and it is important since they prevent the segregation of sister chromatids until all have bound to the spindle.
Learn more here: brainly.com/question/9790187
Answer:
During the 20th century, a belief called behaviorism was popular. Behaviorism was a major change from previous theoretical perspectives, rejecting the emphasis on both the conscious and unconscious mind.
Explanation:
Question was't arranged i have arranged it in ask for detail section.
Answer:
Option e. homozygous is the correct answer.
Explanation:
A gene which has two identical alleles on homologous chromosomes is called homozygous. It is denoted by XX (capital letters) for dominant character (alleles) and xx (lowercase letters) for recessive character (alleles).
Answer:
Repetitive DNA segments: transposable elements.
I hope it helps.
The biome that has over 100 inches of rain each year is the Rainforest. Therefore, the Rainforest has abundant rainfall.