The answer I think should be
C main
Answer:
300
Step-by-step explanation:
A: 1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25 +26+27+28+29+30+31+32+33+34+35+36+37+38+39+40+41+42+43+44+45+46+47+48+49+50+51+52+53+54+55+56+57+58+59+60+61+62+63+64+65+66+ 67+68+69+70+71+72+73+74+75+76+77+78+79+80+81+82+83+84+85+86+87+88+89+90+91+92+93+94+95+96+97+98+99+100
A=5,050
B: 4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20+21+22+23+24+25 +26+27+28+29+30+31+32+33+34+35+36+37+38+39+40+41+42+43+44+45+46+47+48+49+50+51+52+53+54+55+56+57+58+59+60+61+62+63+64+65+66+ 67+68+69+70+71+72+73+74+75+76+77+78+79+80+81+82+83+84+85+86+87+88+89+90+91+92+93+94+95+96+97+98+99+100+101+102+103
B=5,350
B-A
=5,350-5,050
=300
(3a) - (8a) = -5a
2b + b = 3b
-5a + 3b
Answer:
18 hours
Step-by-step explanation:
The unit rate of intake pipe is
[1 tank in 6 hours]
The total unit rate (combined) when 2 work together is
[1 tank in 9 hours]
Intake fills up and outlet empties. Thus we can say:
Rate of Intake - Rate of Outlet = Combined Rate
This becomes:

Where x is the rate of outlet pipe [what we are looking for]
Doing algebra we solve for x:

This means "outlet pipe can empty 3 tanks in 54 hours". So that would mean 54/3 = 18 hours to empty 1 tank