Answer:
First, a rational number is defined as the quotient between two integer numbers, such that:
N = a/b
where a and b are integers.
Now, the axiom that we need to use is:
"The integers are closed under the multiplication".
this says that if we have two integers, x and y, their product is also an integer:
if x, y ∈ Z ⇒ x*y ∈ Z
So, if now we have two rational numbers:
a/b and c/d
where a, b, c, and d ∈ Z
then the product of those two can be written as:
(a/b)*(c/d) = (a*c)/(b*d)
And by the previous axiom, we know that a*c is an integer and b*d is also an integer, then:
(a*c)/(b*d)
is the quotient between two integers, then this is a rational number.
Let's begin by breaking each number down into its prime factors: 4 = 2 x 2 5 = 5 6 = 2 x 3 Next, let's determine the Lowest Common Multiple (LCM) of the numbers 4, 5, and 6 by multiplying all common and unique prime factors of each number: common prime factors: 2 unique prime factors: 2,5,3 LCM = 2 x 2 x 5 x 3 = 60 Next, let's determine how many times 60 goes into 10,000 (excluding remainder): 10,000/60 = 166 and 2/3 Multiples of ALL 3 numbers (4,5,6) = 166 Next, let's determine the Lowest Common Multiple (LCM) of the numbers 4 and 5 by multiplying all common and unique prime factors of each number: common prime factors: none
unique prime factors: 2 x 2 x 5
LCM = 2 x 2 x 5 = 20 Next, let's determine how many times 20 goes into 10,000:
10,000/20 = 500
Multiples of BOTH numbers (4 and 5) = 500 Finally, let's subtract the multiples of ALL three numbers (4,5,6) from the multiples of BOTH numbers (4 and 5) to get our answer: Multiples of ONLY numbers 4 and 5 (excluding 6): 500 - 166 = <span>334</span>
Answer:
is the required fraction.
Step-by-step explanation:
We have been given that 23 high school ball players plays college ball.
And 35 college players plays professional ball
So we need to find fraction of high school players professional ball
is the required fraction.
The steps to solving an inequality are: add or subtract from each side - multiply or divide both sides - simplify.
5x + 8 > -12
5x > -12 - 8
5x > -20
x > -20/5
x > -4
The answer is: x > -4