Answer:
<em>isosce</em><em>les</em><em> </em><em>and</em><em> </em><em>right</em>
<em>I'm not sure</em>
Answer:
180 Vertical angles are opposite angles that share only a vertex. Since ∠3 is adjacent to both ∠1 and ∠2, this means that ∠3 shares a side and vertex with both of these angles.
This means that ∠3 and ∠1 form a straight line; this makes them a linear pair, which makes their sum 180°.
Let's solve this problem step-by-step.
STEP-BY-STEP EXPLANATION:
We will be using simultaneous equations to solve this problem.
The sum of angles on a straight line is 180°.
( R ) and ( 2x + 5 ) are both on the same straight line.
Therefore:
Equation No. 1 -
R + 2x + 5 = 180
R = 180 - 2x - 5
R = 175 - 2x
Vertically opposite angles are equivalent to each other.
( R ) is vertically opposite ( 3x + 15 ).
Therefore:
Equation No. 2 -
R = 3x + 15
Substitute the value of ( R ) from the first equation into the second equation to solve for ( x )
R = 3x + 15
175 - 2x = 3x + 15
- 2x - 3x = 15 - 175
- 5x = - 160
x = - 160 / - 5
x = 160 / 5
x = 32
Next we will substitute the value of ( x ) from the second equation into the first equation to solve for ( R ).
Equation No. 2 -
R = 175 - 2x
R = 175 - 2 ( 32 )
R = 175 - 64
R = 111
FINAL ANSWER:
Therefore, the answer is:
R = 111
x = 32
Hope this helps! :)
Have a lovely day! <3
Answer:
The distributive property is not properly applied to the second polynomial.
Step-by-step explanation:
For whatever reason, it is a common mistake to say that ...
-(a +b +c) = -a +b +c . . . . WRONG!
Rather, it should be ...
-(a +b +c) = -a -b -c . . . . CORRECT
To simplify
![\sqrt[4]{\dfrac{24x^6y}{128x^4y^5}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B24x%5E6y%7D%7B128x%5E4y%5E5%7D%7D)
we need to use the fact that
![\sqrt[4]{x^4}=|x|](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E4%7D%3D%7Cx%7C)
Why the absolute value? It's because
.
We start by rewriting as
![\sqrt[4]{\dfrac{2^23x^6y}{2^6x^4y^5}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B2%5E23x%5E6y%7D%7B2%5E6x%5E4y%5E5%7D%7D)
![\sqrt[4]{\dfrac{2^23x^4x^2y}{2^42^2x^4y^4y}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B2%5E23x%5E4x%5E2y%7D%7B2%5E42%5E2x%5E4y%5E4y%7D%7D)
Since
, we have
, and the above reduces to
![\sqrt[4]{\dfrac{3x^2y}{2^4y^4y}}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B%5Cdfrac%7B3x%5E2y%7D%7B2%5E4y%5E4y%7D%7D)
Then we pull out any 4th powers under the radical, and simplify everything we can:
![\dfrac1{\sqrt[4]{2^4y^4}}\sqrt[4]{\dfrac{3x^2y}{y}}](https://tex.z-dn.net/?f=%5Cdfrac1%7B%5Csqrt%5B4%5D%7B2%5E4y%5E4%7D%7D%5Csqrt%5B4%5D%7B%5Cdfrac%7B3x%5E2y%7D%7By%7D%7D)
![\dfrac1{|2y|}\sqrt[4]{3x^2}](https://tex.z-dn.net/?f=%5Cdfrac1%7B%7C2y%7C%7D%5Csqrt%5B4%5D%7B3x%5E2%7D)
where
allows us to write
, and this also means that
. So we end up with
![\dfrac{\sqrt[4]{3x^2}}{2y}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B4%5D%7B3x%5E2%7D%7D%7B2y%7D)
making the last option the correct answer.