Answer:
30
Step-by-step explanation:
Each one has 10 tenths, so 3 ones have 30 tenths.
You can do this by dividing 3 by 1/10.
3/(1/10) = 3/1 * 10/1 = 30/1 = 30
It is how much the x values can expand on a graph
Solution:
Step 1:
We will calculate the volume of ice cream in the single scoop
The volume of the ice cream will be
![\begin{gathered} V=\frac{1}{3}\pi r^2h+\frac{2}{3}\pi r^3 \\ r=\frac{2in}{2}=1in(cone) \\ h=4.5in \\ r=\frac{3in}{2}=1.5in(radius\text{ of the hemisphere\rparen} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20V%3D%5Cfrac%7B1%7D%7B3%7D%5Cpi%20r%5E2h%2B%5Cfrac%7B2%7D%7B3%7D%5Cpi%20r%5E3%20%5C%5C%20r%3D%5Cfrac%7B2in%7D%7B2%7D%3D1in%28cone%29%20%5C%5C%20h%3D4.5in%20%5C%5C%20r%3D%5Cfrac%7B3in%7D%7B2%7D%3D1.5in%28radius%5Ctext%7B%20of%20the%20hemisphere%5Crparen%7D%20%5Cend%7Bgathered%7D)
By substituting the values, we will have
![\begin{gathered} V=\frac{1}{3}\pi r^{2}h+\frac{2}{3}\pi r^{3} \\ V=\frac{1}{3}\times\frac{22}{7}\times1^2\times4.5+\frac{2}{3}\times\frac{22}{7}\times1.5^3 \\ V=\frac{33}{7}+\frac{99}{14} \\ V=\frac{165}{14} \\ V=11.79in^3 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20V%3D%5Cfrac%7B1%7D%7B3%7D%5Cpi%20r%5E%7B2%7Dh%2B%5Cfrac%7B2%7D%7B3%7D%5Cpi%20r%5E%7B3%7D%20%5C%5C%20V%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%5Cfrac%7B22%7D%7B7%7D%5Ctimes1%5E2%5Ctimes4.5%2B%5Cfrac%7B2%7D%7B3%7D%5Ctimes%5Cfrac%7B22%7D%7B7%7D%5Ctimes1.5%5E3%20%5C%5C%20V%3D%5Cfrac%7B33%7D%7B7%7D%2B%5Cfrac%7B99%7D%7B14%7D%20%5C%5C%20V%3D%5Cfrac%7B165%7D%7B14%7D%20%5C%5C%20V%3D11.79in%5E3%20%5Cend%7Bgathered%7D)
Step 2:
We will use the formula below to calculate the volume of the two scoops of ic cream
![\begin{gathered} V=\frac{1}{3}\pi r^2h+\frac{4}{3}\pi r^3 \\ V=\frac{1}{3}\times\frac{22}{7}\times1^2\times4.5in+\frac{4}{3}\times\frac{22}{7}\times1.5^3 \\ V=\frac{33}{7}+\frac{99}{7} \\ V=\frac{132}{7} \\ V=18.86in^3 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20V%3D%5Cfrac%7B1%7D%7B3%7D%5Cpi%20r%5E2h%2B%5Cfrac%7B4%7D%7B3%7D%5Cpi%20r%5E3%20%5C%5C%20V%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%5Cfrac%7B22%7D%7B7%7D%5Ctimes1%5E2%5Ctimes4.5in%2B%5Cfrac%7B4%7D%7B3%7D%5Ctimes%5Cfrac%7B22%7D%7B7%7D%5Ctimes1.5%5E3%20%5C%5C%20V%3D%5Cfrac%7B33%7D%7B7%7D%2B%5Cfrac%7B99%7D%7B7%7D%20%5C%5C%20V%3D%5Cfrac%7B132%7D%7B7%7D%20%5C%5C%20V%3D18.86in%5E3%20%5Cend%7Bgathered%7D)
Step 3:
We will use the formula below to calculate the volume of the three scoops of ic cream
![\begin{gathered} V=\frac{1}{3}\pi r^2h+\frac{6}{3}\pi r^3 \\ V=\frac{1}{3}\times\frac{22}{7}\times1^2\times4.5+2\times\frac{22}{7}\times1.5^3 \\ V=\frac{33}{7}+\frac{297}{14} \\ V=\frac{363}{14} \\ V=25.93in^3 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20V%3D%5Cfrac%7B1%7D%7B3%7D%5Cpi%20r%5E2h%2B%5Cfrac%7B6%7D%7B3%7D%5Cpi%20r%5E3%20%5C%5C%20V%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%5Cfrac%7B22%7D%7B7%7D%5Ctimes1%5E2%5Ctimes4.5%2B2%5Ctimes%5Cfrac%7B22%7D%7B7%7D%5Ctimes1.5%5E3%20%5C%5C%20V%3D%5Cfrac%7B33%7D%7B7%7D%2B%5Cfrac%7B297%7D%7B14%7D%20%5C%5C%20V%3D%5Cfrac%7B363%7D%7B14%7D%20%5C%5C%20V%3D25.93in%5E3%20%5Cend%7Bgathered%7D)
For the first ice cream with one scoop
![\begin{gathered} 1in^3=\frac{3.50}{11.79} \\ 1in^3=\text{ \$}0.30 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%201in%5E3%3D%5Cfrac%7B3.50%7D%7B11.79%7D%20%5C%5C%201in%5E3%3D%5Ctext%7B%20%5C%24%7D0.30%20%5Cend%7Bgathered%7D)
For the second ice cream with two scoops
![\begin{gathered} 1in^3=\frac{4.50}{18.86} \\ 1in^3=\text{ \$}0.24 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%201in%5E3%3D%5Cfrac%7B4.50%7D%7B18.86%7D%20%5C%5C%201in%5E3%3D%5Ctext%7B%20%5C%24%7D0.24%20%5Cend%7Bgathered%7D)
For the third ice cream with three scoops
![\begin{gathered} 1in^3=\frac{5.50}{25.93} \\ 1in^3=\text{ \$}0.21 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%201in%5E3%3D%5Cfrac%7B5.50%7D%7B25.93%7D%20%5C%5C%201in%5E3%3D%5Ctext%7B%20%5C%24%7D0.21%20%5Cend%7Bgathered%7D)
Hence,
The final answer is
The triple sold at $5.50 has the best value because it has the lowest price of $0.21 per cubic inch of the ice cream
A 48.5 The answer is A because you would put the numbers in order from least to greatest, find the median, then find the median of the other two sets.