We are to verify the identity:
cos(α-B)-cos(α+B) = 2 sinα sinβ
Left hand side = cos(α - B)-cos(α + B)
= cosα cosβ + sinα sinB - (cosα cosB - sinα sinβ)
= cosα cosβ + sinα sinB - cosα cosB + sinα sinβ)
= sinα sinβ + sinα sinβ
= 2 sinα sinβ
= Right Hand side
The quadratic equation is given by:
y = 3x² + 10x - 8
The standard equation of a parabola is given by:
y = ax² + bx + c
Where a, b, c are constants
At point (4, 80):
80 = a(4)² + b(4) + c
16a + 4b + c = 80 (1)
At point (-3, -11):
-11 = a(-3)² + b(-3) + c
9a - 3b + c = -11 (2)
At point (-1, -15):
-15 = a(-1)² + b(-1) + c
a - b + c = -15 (3)
Solving equations 1, 2 and 3 simultaneously gives:
a = 3, b = 10, c = -8
Therefore the quadratic equation becomes:
y = 3x² + 10x - 8
Find out more on quadratic equation at: brainly.com/question/1214333
Answer:
5/9 or 0.5
Step-by-step explanation:
i hope this helps :)
Answer 16
Step-by-step explanation: