The measure of minor arc is equal to its corresponding central angle
Since the arc is equal to 90 the central angle is also equal 90
Answer:
it is your answer plzz like and comment
they are the same lines
x and y are the same
Step-by-step explanation:
i dont know for sure so bye god bless
- Slope-Intercept Form: y = mx + b, with m = slope and (0,b) as the y-intercept.
So starting with the y-intercept, the easiest method to find it is to convert this standard form equation to slope-intercept form. Firstly, add 5x to both sides:

Next, divide both sides by -4 and your slope-intercept form is 
Looking at this slope-intercept form, <u>the y-intercept is (0, -5/2).</u>
Now to find the x-intercept, just set the y-variable to zero and solve:

<u>Our x-intercept is (-2,0).</u>
(A) <em>f(x)</em> = 7 is constant, so <em>f(x</em> + <em>h)</em> = 7, too, which makes <em>f(x</em> + <em>h)</em> - <em>f(x)</em> = 0. So <em>f'(x)</em> = 0.
(B) <em>f(x)</em> = 5<em>x</em> + 1 ==> <em>f(x</em> + <em>h)</em> = 5 (<em>x</em> + <em>h</em>) + 1 = 5<em>x</em> + 5<em>h</em> + 1
==> <em>f(x</em> + <em>h)</em> - <em>f(x)</em> = 5<em>h</em>
Then

(C) <em>f(x)</em> = <em>x</em> ² + 3 ==> <em>f(x</em> + <em>h)</em> = (<em>x</em> + <em>h</em>)² + 3 = <em>x</em> ² + 2<em>xh</em> + <em>h</em> ² + 3
==> <em>f(x</em> + <em>h)</em> - <em>f(x)</em> = 2<em>xh</em> + <em>h</em> ²

(D) <em>f(x)</em> = <em>x</em> ² +<em> </em>4<em>x</em> - 1 ==> <em>f(x</em> + <em>h)</em> = (<em>x</em> + <em>h</em>)² + 4 (<em>x</em> + <em>h</em>) - 1 = <em>x</em> ² + 2<em>xh</em> + <em>h</em> ² + 4<em>x</em> + 4<em>h</em> - 1
==> <em>f(x</em> + <em>h)</em> - <em>f(x)</em> = 2<em>xh</em> + <em>h</em> ² + 4<em>h</em>
