substitute x for y-1
2(y-1)-y=6 distribute
2y-2-y=6 subtract y in 2y
y-2=6 add 2 to get y by itself
y=8
Put y back into equation x=y-1
x=8-1
X=7
Answer:
After 25 years the population will be:
- Australia: 22271200
- China: 1580220878
- Mexico: 157380127
- Zaire: 112794819
Step-by-step explanation:
Growth rate problem that has a growth rate proportional to the population size can be solved using the equation:
P(t) = P₀eʳᵗ
- t is your unit of time. It could be days, or hours, or minutes. It changes depending on each problem. In this problem, t is measured in years because you're jumping from 2000 to 2025. Years just makes the most sense to measure that leap in time.
- P(t) is the population at time t. An example in this problem could be P(20) would be the population 20 years after the initial count. or maybe P(12) would be the population 12 years after the initial count. or P(0) would be the initial count of the population.
- P₀ is the initial population at P(0)
- r is the growth rate.<u><em> Don't forget to convert the percentage to its decimal form</em></u>
Now that everything is set out, lets use the equation to solve for our answer.
P(t) = P₀eʳᵗ
<u>Australia:</u>

after 25 years

<u>China:</u>

after 25 years:

<u>Mexico:</u>

after 25 years:

<u>Zaire:</u>

after 25 years:

Answer:
87
Step-by-step explanation:
Hope this helps
Answer:
X+13=116
Step-by-step explanation:
Part A: f(t) = t² + 6t - 20
u = t² + 6t - 20
+ 20 + 20
u + 20 = t² + 6t
u + 20 + 9 = t² + 6t + 9
u + 29 = t² + 3t + 3t + 9
u + 29 = t(t) + t(3) + 3(t) + 3(3)
u + 29 = t(t + 3) + 3(t + 3)
u + 29 = (t + 3)(t + 3)
u + 29 = (t + 3)²
- 29 - 29
u = (t + 3)² - 29
Part B: The vertex is (-3, -29). The graph shows that it is a minimum because it shows that there is a positive sign before the x²-term, making the parabola open up and has a minimum vertex of (-3, -29).
------------------------------------------------------------------------------------------------------------------
Part A: g(t) = 48.8t + 28 h(t) = -16t² + 90t + 50
| t | g(t) | | t | h(t) |
|-4|-167.2| | -4 | -566 |
|-3|-118.4| | -3 | -364 |
|-2| -69.6 | | -2 | -194 |
|-1| -20.8 | | -1 | -56 |
|0 | -28 | | 0 | 50 |
|1 | 76.8 | | 1 | 124 |
|2 | 125.6| | 2 | 166 |
|3 | 174.4| | 3 | 176 |
|4 | 223.2| | 4 | 154 |
The two seconds that the solution of g(t) and h(t) is located is between -1 and 4 seconds because it shows that they have two solutions, making it between -1 and 4 seconds.
Part B: The solution from Part A means that you have to find two solutions in order to know where the solutions of the two functions are located at.