We are given a graph of a quadratic function y = f(x) .
We need to find the solution set of the given graph of a quadratic function .
<em>Note: Solution of a function the values of x-coordinates, where graph cut the x-axis.</em>
For the shown graph, we can see that parabola in the graph doesn't cut the x-axis at any point.
It cuts only y-axis.
Because solution of a graph is only the values of x-coordinates, where graph cut the x-axis. Therefore, there would not by any solution of the quadratic function y = f(x).
<h3>So, the correct option is 2nd option :∅.</h3>
Answer:It would take 1.700 hours.
Step-by-step explanation:
Note that if

, then

, and so we can collapse the system of ODEs into a linear ODE:


which is a pretty standard linear ODE with constant coefficients. We have characteristic equation

so that the characteristic solution is

Now let's suppose the particular solution is

. Then

and so

Thus the general solution for

is

and you can find the solution

by simply differentiating

.
If the height is 6ft then the base is 13ft.
78/6=13
Hope this helps.
Answer:
Option A) The function is even because it is symmetric with respect to the y-axis.
Step-by-step explanation:
We are given a graph of the function.
We can see that the given function is symmetric around the y axis as the y axis acts as a mirror.
Symmetry around y-axis
- The y-axis acts as the line of symmetry for the given graph.
- A graph is said to be symmetric about the y axis if (a,b) is on the graph, then we can find the point (-a,b) on the graph as well.
Even Function:
- A function is said to be even if

- A function f is even if the graph of f is symmetric with respect to the y-axis
Odd function:
- A function is said to be odd if

- A function f is even if the graph of f is symmetric with respect to the x-axis.
Thus, we can write that the given function is an even function as the the graph is symmetric to the y-axis.
Option A) The function is even because it is symmetric with respect to the y-axis.