![\bf 400,000,000\implies 4\times 10^8 \\\\[-0.35em] ~\dotfill\\\\ \cfrac{\textit{desktop users}}{\textit{mobile users}}\qquad \qquad \cfrac{1.2\times 10^9}{4\times 10^8}\implies \cfrac{12\times 10^8}{4\times 10^8}\implies \cfrac{12}{4}\times\cfrac{10^8}{10^8}\implies \cfrac{3}{1}](https://tex.z-dn.net/?f=%5Cbf%20400%2C000%2C000%5Cimplies%204%5Ctimes%2010%5E8%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B%5Ctextit%7Bdesktop%20users%7D%7D%7B%5Ctextit%7Bmobile%20users%7D%7D%5Cqquad%20%5Cqquad%20%5Ccfrac%7B1.2%5Ctimes%2010%5E9%7D%7B4%5Ctimes%2010%5E8%7D%5Cimplies%20%5Ccfrac%7B12%5Ctimes%2010%5E8%7D%7B4%5Ctimes%2010%5E8%7D%5Cimplies%20%5Ccfrac%7B12%7D%7B4%7D%5Ctimes%5Ccfrac%7B10%5E8%7D%7B10%5E8%7D%5Cimplies%20%5Ccfrac%7B3%7D%7B1%7D)
3 : 1, or 3 to 1, thus 3 times as many.
Answer:
B. 18 bags
Step-by-step explanation:
First you need to determine the area of the vegetable garden. The vegetable garden is a rectangle with the following dimensions:
L = 24 ft
W = 9 ft
The Formula for the area of a rectangle is:

So let's solve it:

With that, we can figure out how many bags of fertilizer would be needed by dividing the area of the vegetable garden by how much one bag of fertilizer covers:

We need the graphing tool.
Answer:
1: 3 ratio of the volume of the cone to the volume of the cylinder
Step-by-step explanation:
Volume of cone(V) is given by:

where, r is the radius and h is the height of the cone.
Volume of cylinder(V') is given by:

where, r' is the radius and h' is the height of the cylinder.
As per the statement:
A cylinder and a cone have congruent heights and radii.
⇒r = r' and h = h'
then;

⇒
Therefore, the ratio of the volume of the cone to the volume of the cylinder is, 1 : 3