1. Check the drawing of the rhombus ABCD in the picture attached.
2. m(CDA)=60°, and AC and BD be the diagonals and let their intersection point be O.
3. The diagonals:
i) bisect the angles so m(ODC)=60°/2=30°
ii) are perpendicular to each other, so m(DOC)=90°
4. In a right triangle, the length of the side opposite to the 30° angle is half of the hypothenuse, so OC=3 in.
5. By the pythagorean theorem,

6. The 4 triangles formed by the diagonal are congruent, so the area of the rhombus ABCD = 4 Area (triangle DOC)=4*

=

(

)
Answer:
To prove that ( sin θ cos θ = cot θ ) is not a trigonometric identity.
Begin with the right hand side:
R.H.S = cot θ =
L.H.S = sin θ cos θ
so, sin θ cos θ ≠ 
So, the equation is not a trigonometric identity.
=========================================================
<u>Anther solution:</u>
To prove that ( sin θ cos θ = cot θ ) is not a trigonometric identity.
Assume θ with a value and substitute with it.
Let θ = 45°
So, L.H.S = sin θ cos θ = sin 45° cos 45° = (1/√2) * (1/√2) = 1/2
R.H.S = cot θ = cot 45 = 1
So, L.H.S ≠ R.H.S
So, sin θ cos θ = cot θ is not a trigonometric identity.
Howdy!
using the expression 14.99(n) + 4.99, the total of 3 CDs would cost $49.96.
Answer:
Yes
Step-by-step explanation:
Reason is that a square has all the aspects of a parallelogram a rectangle and a rhombus. It gets its congruent diagonals from the rectangle which is congruent
Answer:
It is (A) 4 congruent faces
Step-by-step explanation:
Easy to see how its the Base sides
-Hope it helped