Answer:
We start with the equation:
A: 3*(x + 2) = 18
And we want to construct equation B:
B: X + 2 = 18
where I suppose that X is different than x.
Because in both equations the right side is the same thing, then the left side also should be the same thing, this means that:
3*(x + 2) = X + 2
Now we can isolate the variable x.
(x + 2) = (X + 2)/3
x = (X + 2)/3 - 2
Then we need to replace x by (X + 2)/3 - 2 in equation A, and we will get equation B.
Let's do it:
A: 3*(x + 2) = 18
Now we can replace x by = (X + 2)/3 - 2
3*( (X + 2)/3 - 2 + 2) = 18
3*( (X + 2)/3 ) = 18
3*(X + 2)/3 = 18
(X + 2) = 18
Which is equation B.
I believe its 20% salt to water ratio since theres 5 pieces all together
From the graphs you can see that the graph of the line

lies under the graph of the line

. Then all solutions of unequality

are solutions of unequality

, but not all solutions of unequality

are solutions of unequality

.
For example, if x=1, y=-2

.
Answer: Correct choice is B.
Answer:
n m n .m .nmn nm Step-by-step explanation:
Answer:
It will double in the year 2063
Step-by-step explanation:
Let the amount deposited be $x, when it doubles, the amount becomes $2x
we can use the compound interest formula to know when this will happen
The compound interest formula is as follows;
A = P(1+r/n)^nt
In this question,
A is the amount which is 2 times the principal and this is $2x
P is called the principal and it is the amount deposited which is $x
r is the interest rate which is 3.2% = 3.2/100 = 0.032
n is the number of times compounding takes place per year which is quarterly which equals to 4
t is the number of years which we want to calculate.
Substituting all these into the equation, we have;
2x = x(1+0.032/4)^4t
divide through by x
2 = (1+ 0.008)^4t
2 = (1.008)^4t
we use logarithm here
Take log of both sides
log 2 = log (1.008)^2t
log 2 = 2t log 1.008
2t = log 2/log 1.008
2t = 86.98
t = 86.98/2
t =43.49 which is 43 years approximately
Thus the year the money will double will be 2020 + 43 years = 2063