1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alukav5142 [94]
3 years ago
15

Please help me (Trig) and show your work in the answer

Mathematics
1 answer:
harina [27]3 years ago
4 0

Answer:

  • 30.24 m

Step-by-step explanation:

<u>Find the length of one of the braces b, use sine:</u>

  • sin 55° = 6.2 / b
  • b = 6.2 / sin 55°
  • b = 7.56 m

<u>Total length:</u>

  • 7.56*4 = 30.24 m
You might be interested in
Find the equation of the linear function. In slope intercept form
PSYCHO15rus [73]
Good job oh my God you are so smart oh my God a good job bro
8 0
3 years ago
Can someone please help with the last problem
Brut [27]

Answer:

  18x +9h

Step-by-step explanation:

Such problems are tedious, but not difficult. The trick is to avoid making mistakes in the algebra.

  \dfrac{f(x+h)-f(x)}{h}=\dfrac{(9(x+h)^2)-(9x^2)}{h}\\\\=\dfrac{9(x^2+2xh+h^2)-9x^2}{h}=\dfrac{18xh+9h^2}{h}=\boxed{18x+9h}

3 0
3 years ago
1.Show that the statement p: “If x is a real number such that x3 + 4x = 0, then x is 0” is true by
Genrish500 [490]

If x is a real number such that x3 + 4x = 0 then x is 0”.Let q: x is a real number such that x3 + 4x = 0 r: x is 0.i To show that statement p is true we assume that q is true and then show that r is true.Therefore let statement q be true.∴ x2 + 4x = 0 x x2 + 4 = 0⇒ x = 0 or x2+ 4 = 0However since x is real it is 0.Thus statement r is true.Therefore the given statement is true.ii To show statement p to be true by contradiction we assume that p is not true.Let x be a real number such that x3 + 4x = 0 and let x is not 0.Therefore x3 + 4x = 0 x x2+ 4 = 0 x = 0 or x2 + 4 = 0 x = 0 orx2 = – 4However x is real. Therefore x = 0 which is a contradiction since we have assumed that x is not 0.Thus the given statement p is true.iii To prove statement p to be true by contrapositive method we assume that r is false and prove that q must be false.Here r is false implies that it is required to consider the negation of statement r.This obtains the following statement.∼r: x is not 0.It can be seen that x2 + 4 will always be positive.x ≠ 0 implies that the product of any positive real number with x is not zero.Let us consider the product of x with x2 + 4.∴ x x2 + 4 ≠ 0⇒ x3 + 4x ≠ 0This shows that statement q is not true.Thus it has been proved that∼r ⇒∼qTherefore the given statement p is true.

8 0
3 years ago
May I please receive help?
Natalija [7]

Answer:

<h2><u>L</u><u>i</u><u>n</u><u>e</u><u> </u><u>1</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>l</u><u>i</u><u>n</u><u>e</u><u> </u><u>2</u><u>:</u><u> </u><u>●</u><u>P</u><u>a</u><u>r</u><u>a</u><u>l</u><u>l</u><u>e</u><u>l</u><u> </u><u>○</u><u>P</u><u>e</u><u>r</u><u>p</u><u>e</u><u>n</u><u>d</u><u>i</u><u>c</u><u>u</u><u>l</u><u>a</u><u>r</u><u> </u><u>○</u><u>N</u><u>e</u><u>t</u><u>h</u><u>e</u><u>r</u></h2><h2><u>L</u><u>i</u><u>n</u><u>e</u><u> </u><u>1</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>l</u><u>i</u><u>n</u><u>e</u><u> </u><u>3</u><u>:</u><u> </u><u>○</u><u>P</u><u>a</u><u>r</u><u>a</u><u>l</u><u>l</u><u>e</u><u>l</u><u> </u><u>○</u><u>P</u><u>e</u><u>r</u><u>p</u><u>e</u><u>n</u><u>d</u><u>i</u><u>c</u><u>u</u><u>l</u><u>a</u><u>r</u><u> </u><u>●</u><u>N</u><u>e</u><u>t</u><u>h</u><u>e</u><u>r</u></h2><h2><u>L</u><u>i</u><u>n</u><u>e</u><u> </u><u>2</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>l</u><u>i</u><u>n</u><u>e</u><u> </u><u>3</u><u>:</u><u> </u><u>○</u><u>P</u><u>a</u><u>r</u><u>a</u><u>l</u><u>l</u><u>e</u><u>l</u><u> </u><u>●</u><u>P</u><u>e</u><u>r</u><u>p</u><u>e</u><u>n</u><u>d</u><u>i</u><u>c</u><u>u</u><u>l</u><u>a</u><u>r</u><u> </u><u>○</u><u>N</u><u>e</u><u>t</u><u>h</u><u>e</u><u>r</u></h2>

<h2><em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>B</u></em><em><u>l</u></em><em><u>a</u></em><em><u>c</u></em><em><u>k</u></em><em><u> </u></em><em><u>c</u></em><em><u>i</u></em><em><u>r</u></em><em><u>c</u></em><em><u>l</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>s</u></em><em><u> </u></em><em><u>t</u></em><em><u>h</u></em><em><u>e</u></em><em><u> </u></em><em><u>a</u></em><em><u>n</u></em><em><u>s</u></em><em><u>w</u></em><em><u>e</u></em><em><u>r</u></em></h2>

<em><u>h</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>y</u></em><em><u>o</u></em><em><u>u</u></em><em><u> </u></em><em><u>a</u></em><em><u>d</u></em><em><u>d</u></em><em><u> </u></em><em><u>b</u></em><em><u>r</u></em><em><u>a</u></em><em><u>i</u></em><em><u>n</u></em><em><u>l</u></em><em><u>i</u></em><em><u>e</u></em><em><u>s</u></em><em><u>t</u></em><em><u> </u></em><em><u>a</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>5</u></em><em><u> </u></em><em><u>s</u></em><em><u>t</u></em><em><u>r</u></em><em><u>a</u></em><em><u>s</u></em>

<h2>Step-by-step explanation:</h2><h2><em><u>G</u></em><em><u>o</u></em><em><u>o</u></em><em><u>d</u></em><em><u>b</u></em><em><u>l</u></em><em><u>u</u></em><em><u>c</u></em><em><u>k</u></em></h2>

<em><u>d</u></em><em><u>o</u></em><em><u>n</u></em><em><u>t</u></em><em><u> </u></em><em><u>f</u></em><em><u>o</u></em><em><u>r</u></em><em><u>g</u></em><em><u>e</u></em><em><u>t</u></em><em><u> </u></em><em><u>a</u></em><em><u>d</u></em><em><u>d</u></em><em><u> </u></em><em><u>b</u></em><em><u>r</u></em><em><u>a</u></em><em><u>i</u></em><em><u>n</u></em><em><u>l</u></em><em><u>i</u></em><em><u>e</u></em><em><u>s</u></em><em><u>t</u></em>

<em><u>a</u></em><em><u>n</u></em><em><u>d</u></em><em><u> </u></em><em><u>5</u></em><em><u> </u></em><em><u>s</u></em><em><u>t</u></em><em><u>a</u></em><em><u>r</u></em><em><u>s</u></em>

<h2><em><u>T</u></em><em><u>H</u></em><em><u>A</u></em><em><u>N</u></em><em><u>K</u></em><em><u> </u></em><em><u>Y</u></em><em><u>O</u></em><em><u>U</u></em><em><u>!</u></em><em><u>!</u></em><em><u>!</u></em></h2>

6 0
3 years ago
Which value is a solution to the inequality 9 - y &gt;12?
vovikov84 [41]

Answer:

(A) -6

Step-by-step explanation: hope this helps!

7 0
3 years ago
Read 2 more answers
Other questions:
  • Simplify the expression by using a double-angle formula. 2 sin 31°cos 31°
    6·1 answer
  • I need this, for tomorrow, numbers 12 and 14
    10·1 answer
  • Will give brainlist plz help its for my 9 week exam
    12·1 answer
  • Help giving extra points ASAP
    11·1 answer
  • What are the conditions for using the standard deviation formulasquare root p times 1 minus p divided by nwhen working with a sa
    5·1 answer
  • Factor Completely<br> 8x^2-8xy-6y^2
    12·1 answer
  • Pls remember to give your answer in metres
    12·1 answer
  • PLEASE HELPPPP WITH THIS
    7·2 answers
  • Explain how to write the equation of a vertical line
    10·2 answers
  • Please answer this i need helppp
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!