Answer:
$814.10
Explanation:
Calculation to determine what the price of the bond now
Using this formula
Bond price = PV of coupon payments + PV of face value
Bond price= C×((1 / r) – {1 / [r(1 + r)t]}) + FV / (1 + r)t
Let plug in the formula
Bond price= [(.080 ×$1,000) / 2] ×[[1 / (.12 / 2)] – (1 / {(.12 / 2)[1 + (.12 / 2)](7 ×2)})] + $1,000 / [1 + (.12 / 2)](7 ×2)
Bond price= $814.10
Therefore the price of the bond now is $814.10
Answer:
a) $ 333.67
b) 12.6825
Explanation:
a) The 333.67 amount is the payment per month without interest and of course interest will differ from month to month as the loan is amortized monthly. to get the payment using financial calculator its N= 60, I/YR = 12%/12=0.01, 15000=PV, FV=O THEN COMPUTE PMT
OR use the formula pmt= PV/1-1/(1+rate)^time/rate
b) To get EAR = (1+ rate/ compounding)^compounding-1
(1+0.12/12)^12-1
Answer:
intrinsic rewards
Explanation:
In this scenario, it seems that Mike is focused on the intrinsic rewards of his job. These are rewards that come from within the employee themselves. For example, an employee who is motivated is working for his/her own satisfaction and finds meaning in their challenging work, which in term is the intrinsic reward. In this case, the job satisfaction and sense of accomplishment are the intrinsic rewards that Mike wants from his job.
Answer:
The annual annuity payment during this time at the rate of 6.50 % is $1291.67
Explanation:
Compute the annual annuity payments (PMT)
Present Value of annuity (PV) = $10538.38
Number of years (n) = 12
Rate (i) = 6.50%
![Present Value (PV) = PMT [1- (1+r)^{n} ]/r]](https://tex.z-dn.net/?f=Present%20Value%20%28PV%29%20%3D%20PMT%20%5B1-%20%281%2Br%29%5E%7Bn%7D%20%5D%2Fr%5D)
![10538.38 = PMT [1- (1+0.0650)^{-12} ]/0.0650](https://tex.z-dn.net/?f=10538.38%20%3D%20PMT%20%5B1-%20%281%2B0.0650%29%5E%7B-12%7D%20%5D%2F0.0650)
![Annual Annuity Payments = 0.0650*10538.38/[1- (1+0.0650)^{-12} ]](https://tex.z-dn.net/?f=Annual%20Annuity%20Payments%20%3D%200.0650%2A10538.38%2F%5B1-%20%281%2B0.0650%29%5E%7B-12%7D%20%5D)
Annual Annuity Payments = $1291.67
Answer:
There is no specific type of contract to define this agreement, as it was a verbal acceptance. And yes, there is a difference in the use of cellphone and voicemail as there would be a time difference. Please give brainliest.