Given:
A figure of combination of hemisphere, cylinder and cone.
Radius of hemisphere, cylinder and cone = 6 units.
Height of cylinder = 12 units
Slant height of cone = 10 units.
To find:
The volume of the given figure.
Solution:
Volume of hemisphere is:

Where, r is the radius of the hemisphere.



Volume of cylinder is:

Where, r is the radius of the cylinder and h is the height of the cylinder.



We know that,
[Pythagoras theorem]
Where, l is length, r is the radius and h is the height of the cone.

Volume of cone is:

Where, r is the radius of the cone and h is the height of the cone.



Now, the volume of the combined figure is:



Therefore, the volume of the given figure is 2110.08 cubic units.
Simplifying radical expressions expression is important before addition or subtraction because it you need to which like terms can be added or subtracted. If we hadn't simplified the radical expressions, we would not have come to this solution. In a way, this is similar to what would be done for polynomial expression.
Answer:
the answer for the 2nd question is 1/4
Step-by-step explanation:
i took the test