1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olchik [2.2K]
2 years ago
9

Let $x$ and $y$ be real numbers such that

Mathematics
1 answer:
Tresset [83]2 years ago
6 0

Answer:

we needa get some money!

Step-by-step explanation:

You might be interested in
What is the mean for the set of data
AnnyKZ [126]

Answer:

B) 25

Step-by-step explanation:

First, you add up all the numbers. Then, you divide it by 9 which is the total amount of numbers there are.

7 0
3 years ago
The table shows a linear function.
sergejj [24]

Answer:

\large\boxed{y=\dfrac{5}{3}x+9}

Step-by-step explanation:

The slope-intercept form of an equation of a line:

y=mx+b

<em>m</em><em> - slope</em>

<em>b</em><em> - y-intercept → (0, b)</em>

The formula of a slope:

m=\dfrac{y_2-y_1}{x_2-x_1}

From the table we have an y-intercept (0, 9) → b = 9.

Take other point from the table (-6, -1).

Calculate the slope:

m=\dfrac{-1-9}{-6-0}=\dfrac{-10}{-6}=\dfrac{5}{3}

Finally:

y=\dfrac{5}{3}x+9

7 0
3 years ago
25x
solmaris [256]

Answer:

option c is correct answer

7 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
3 years ago
The number 42 is what percent of 35
Vesna [10]

35 - 100%

42 - x


X=42×100/35=120%


120-100=20%


Answer: 20%

5 0
3 years ago
Other questions:
  • The GCF 28a^3b and 16ab^2 <br><br> A)4ab<br> B)4a^3b<br> C)28ab<br> D)112a^3b^2
    9·1 answer
  • 2m = 1 + m what do I need to do to solve
    5·2 answers
  • What are the right choices
    12·1 answer
  • What is the mean number of people in each age range? Explain
    7·2 answers
  • A city garden club is planting a square garden. They drive pegs into the ground at each corner and tie strings between each pair
    10·1 answer
  • Explain how the value of Expression A
    12·1 answer
  • On a snowy winter's eve, two candles are lit at the exact same time. A 18-inch candle and a 21-inch
    8·1 answer
  • )Line CP is a perpendicular bisector to line segment AB. If
    14·1 answer
  • ASAP what is the answer 8q=64. also can you explain how to do this
    5·1 answer
  • Given that A = {1, 2,2 3} and B = {4, 6}, then find B×A
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!