If you get 0 as the last value in the bottom row, then the binomial is a factor of the dividend.
Let's say the binomial is of the form (x-k) and it multiplies with some other polynomial q(x) to get p(x), so,
p(x) = (x-k)*q(x)
If you plug in x = k, then,
p(k) = (k-k)*q(k)
p(k) = 0
The input x = k leads to the output y = 0. Therefore, if (x-k) is a factor of p(x), then x = k is a root of p(x).
It turns out that the last value in the bottom row of a synthetic division table is the remainder after long division. By the remainder theorem, p(k) = r where r is the remainder after dividing p(x) by (x-k). If r = 0, then (x-k) is a factor, p(k) = 0, and x = k is a root.
Answer:
200.4 at 0.25%
Step-by-step explanation:
Given data
P= P200
r= 0.25%
t= 1 year
n= 12
A= P(1+ r/n)^nt
substitute
A= 200(1+ 0.0025/12)^12*1
A= 200(1+ 0.00020833333)^12
A= 200(1.0002)^12
A= 200* 1.002
A= 200.4
Hence the amount is 200.4 at 0.25%
A number is rational if it can be written as the ratio of two integers.
The ratio of two integers is a fraction, and you just did it. Your number
is the ratio of 1 to 8 . It's about as rational as you can get.
<span>Here's a fun fact that's easy to remember:
<em>ANY</em> number that you can write down on paper, completely,
with digits
and a decimal point or a fraction bar if you need them, is
rational.</span>
Answer: 20%
100 shares at $45each cost 100*45 = $4500
After a year, he sold the share at the rate if $52 each and it cost 52*100 = 5200
He received dividend of $2 on each dollars meaning 100*2 = $200
So,
$5200+200 = 5400
Profit = $5400 - 4500 = 900
%profit = 900*100 / 4500 = 20
No need to fear, thehotdogman93 is here!
The first step is to get rid of those very large numbers. It's going to be very difficult to factor unless we can bring those high numbers down. So lets see if we can factor each term.
So after dividing 49 with every single digit. The only number that divides evenly is 7 and one, and 16 isnt divisible evenly by 7 so that didn't work. Looks like we're gonna have to work with these big numbers.
There is something interesting though about these numbers. 16 and 49 are both perfect squares. 16 is the same as 4^2 and 49 is the same as 7^2. So we can factor the whole trinomial as:

If we were to expand this out as:

and multiply it back into the original form. It would match with the expression we started with. The 4's would multiply back into 16x^2 and the 7's would multiply back into 49.
Additionally 4 * -7 is -28, so you can combine two -28x's into the -56x term in the original trinomial.
Thus, the answer is yes you can, and the answer is:
