Answer:
a. 3.72 [atm]
Explanation:
For a gas at constant temperature, (with no change in number of molecules of the gas), we can apply Boyle's Law: 
![(1.556[atm])(268.5[mL])=P_2(112.4[mL])](https://tex.z-dn.net/?f=%281.556%5Batm%5D%29%28268.5%5BmL%5D%29%3DP_2%28112.4%5BmL%5D%29)
![\dfrac{(1.556[atm])(268.5[mL\!\!\!\!\!\!\!\!{--}])}{112.4[mL \!\!\!\!\!\!\!\!{--}]}=\dfrac{P_2(112.4[mL]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{-----})}{112.4[mL]\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!{-----}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%281.556%5Batm%5D%29%28268.5%5BmL%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B--%7D%5D%29%7D%7B112.4%5BmL%20%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B--%7D%5D%7D%3D%5Cdfrac%7BP_2%28112.4%5BmL%5D%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B-----%7D%29%7D%7B112.4%5BmL%5D%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%5C%21%7B-----%7D%7D)
![3.716957[atm]=P_2](https://tex.z-dn.net/?f=3.716957%5Batm%5D%3DP_2)
It seems like the answer should have 4 significant figures since all of the other quantities have 4 significant figures, but the closest answer choice of those provided is a. 3.72
The kinetic energies of the particles (atoms, molecules, or ions) that make up a substance or object.
1) <span>Step 5 A tree absorbs the carbon from the atmosphere into its leaves for photosynthesis. Inorganic carbon is turned into organic.
2) </span><span>Step 1 A caterpillar gets the carbon by eating the tree's leaves. Caterpillar use carbon for energy.
3) </span><span>Step 3 A bird gets the carbon by eating the caterpillar. Organic carbon shifts from one animal to another
4) </span><span>Step 4 The bird flies into a building and dies instantly. It falls to the ground.
5) </span><span>Step 2 The bird decomposes and the carbon is added to the atmosphere. Organic carbon turns into inorganic.
</span>
Answer:
The mean free path = 2.16*10^-6 m
Explanation:
<u>Given:</u>
Pressure of gas P = 100 kPa
Temperature T = 300 K
collision cross section, σ = 2.0*10^-20 m2
Boltzmann constant, k = 1.38*10^-23 J/K
<u>To determine:</u>
The mean free path, λ
<u>Calculation:</u>
The mean free path is related to the collision cross section by the following equation:

where n = number density

Substituting for P, k and T in equation (2) gives:

Next, substituting for n and σ in equation (1) gives:
