Answer:
Here's what I get
Explanation:
CH₃CH₂CH₂CH₂CH₂CH₃ — hexane
CH₂=CHCH₂CH₂CH₂CH₃ — hex-1-ene is the preferred IUPAC name (PIN). 1-Hexene is accepted
CH₃C≡CCH₃ — but-2-yne (PIN); 2-butyne is accepted
CH₃CH(CH₃)CH₂CH₂CH₃ — 2-methylpentane
CH₃CH₂CHCICH₂CH₃ — 3-chloropentane
Answer:
The new volume of the gas is 276.45 mL.
Explanation:
Charles's law indicates that for a given sum of gas at constant pressure, as the temperature increases, the volume of the gas increases, and as the temperature decreases, the volume of the gas decreases.
Charles's law is a law that mathematically says that when the amount of gas and pressure are kept constant, the quotient that exists between the volume and the temperature will always have the same value:

Analyzing an initial state 1 and a final state 2, it is satisfied:

In this case:
- V1= 250 mL
- T1= 293 K
- V2= ?
- T2= 324 K
Replacing:

Solving:

V2= 276.45 mL
<em><u>The new volume of the gas is 276.45 mL.</u></em>
<u>Answer:</u> The value of <em>i</em> is 1.4 and 40% dissociation of 100 particles of zinc sulfate will yield 60 undissociated particles.
<u>Explanation:</u>
The equation used to calculate the Vant' Hoff factor in dissociation follows:

where,
= degree of dissociation = 40% = 0.40
i = Vant' Hoff factor
n = number of ions dissociated = 2
Putting values in above equation, we get:

The equation used to calculate the degee of dissociation follows:

Total number of particles taken = 100
Degree of dissociation = 40% = 0.40
Putting values in above equation, we get:

This means that 40 particles are dissociated and 60 particles remain undissociated in the solution.
Hence, 40% dissociation of 100 particles of zinc sulfate will yield 60 undissociated particles.
Answer:
2 moles NH3 = 1 mole of N2
3 moles of H2 = 1 mole of N2
3 moles of H2 = 2 moles of NH3
Explanation:
The balanced equation for the reaction is given below:
N2 + 3H2 —> 2NH3
From the balanced equation above,
1 mole of N2 reacted with 3 moles of H2 to produce 2 moles of NH3.
Thus, we can say that:
1 mole of N2 = 3 moles of H2
1 mole of N2 = 2 moles of NH3
3 moles of H2 = 2 moles of NH3
Thus, considering the options given above, the right answers to the question are:
2 moles NH3 = 1 mole of N2
3 moles of H2 = 1 mole of N2
3 moles of H2 = 2 moles of NH3
Answer:
Last Quarter also called Third Quarter.
Explanation: