1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sukhopar [10]
3 years ago
15

Greatest common factor 16 and 100

Mathematics
2 answers:
worty [1.4K]3 years ago
5 0

Answer:

So the greatest common factor 16 and 100 is 4.

OverLord2011 [107]3 years ago
3 0

Answer:

4

Step-by-step explanation:

The greatest common factor (GCF)

You might be interested in
An airliner maintaining a constant elevation of 2 miles passes over an airport at noon traveling 500 mi/hr due west. At 1:00 PM,
butalik [34]

Answer:

\frac{ds}{dt}\approx 743.303\,\frac{mi}{h}

Step-by-step explanation:

Let suppose that airliners travel at constant speed. The equations for travelled distance of each airplane with respect to origin are respectively:

First airplane

r_{A} = 500\,\frac{mi}{h}\cdot t\\r_{B} = 550\,\frac{mi}{h}\cdot t

Where t is the time measured in hours.

Since north and west are perpendicular to each other, the staight distance between airliners can modelled by means of the Pythagorean Theorem:

s=\sqrt{r_{A}^{2}+r_{B}^{2}}

Rate of change of such distance can be found by the deriving the expression in terms of time:

\frac{ds}{dt}=\frac{r_{A}\cdot \frac{dr_{A}}{dt}+r_{B}\cdot \frac{dr_{B}}{dt}}{\sqrt{r_{A}^{2}+r_{B}^{2}} }

Where \frac{dr_{A}}{dt} = 500\,\frac{mi}{h} and \frac{dr_{B}}{dt} = 550\,\frac{mi}{h}, respectively. Distances of each airliner at 2:30 PM are:

r_{A}= (500\,\frac{mi}{h})\cdot (1.5\,h)\\r_{A} = 750\,mi

r_{B}=(550\,\frac{mi}{h} )\cdot (1.5\,h)\\r_{B} = 825\,mi

The rate of change is:

\frac{ds}{dt}=\frac{(750\,mi)\cdot (500\,\frac{mi}{h} )+(825\,mi)\cdot(550\,\frac{mi}{h})}{\sqrt{(750\,mi)^{2}+(825\,mi)^{2}} }

\frac{ds}{dt}\approx 743.303\,\frac{mi}{h}

6 0
3 years ago
Problem: The height, X, of all 3-year-old females is approximately normally distributed with mean 38.72
Lisa [10]

Answer:

0.1003 = 10.03% probability that a simple random sample of size n= 10 results in a sample mean greater than 40 inches.

Gestation periods:

1) 0.3539 = 35.39% probability a randomly selected pregnancy lasts less than 260 days.

2) 0.0465 = 4.65% probability that a random sample of 20 pregnancies has a mean gestation period of 260 days or less.

3) 0.004 = 0.4% probability that a random sample of 50 pregnancies has a mean gestation period of 260 days or less.

4) 0.9844 = 98.44% probability a random sample of size 15 will have a mean gestation period within 10 days of the mean.

Step-by-step explanation:

To solve these questions, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the z-score of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

The height, X, of all 3-year-old females is approximately normally distributed with mean 38.72 inches and standard deviation 3.17 inches.

This means that \mu = 38.72, \sigma = 3.17

Sample of 10:

This means that n = 10, s = \frac{3.17}{\sqrt{10}}

Compute the probability that a simple random sample of size n= 10 results in a sample mean greater than 40 inches.

This is 1 subtracted by the p-value of Z when X = 40. So

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{X - \mu}{s}

Z = \frac{40 - 38.72}{\frac{3.17}{\sqrt{10}}}

Z = 1.28

Z = 1.28 has a p-value of 0.8997

1 - 0.8997 = 0.1003

0.1003 = 10.03% probability that a simple random sample of size n= 10 results in a sample mean greater than 40 inches.

Gestation periods:

\mu = 266, \sigma = 16

1. What is the probability a randomly selected pregnancy lasts less than 260 days?

This is the p-value of Z when X = 260. So

Z = \frac{X - \mu}{\sigma}

Z = \frac{260 -  266}{16}

Z = -0.375

Z = -0.375 has a p-value of 0.3539.

0.3539 = 35.39% probability a randomly selected pregnancy lasts less than 260 days.

2. What is the probability that a random sample of 20 pregnancies has a mean gestation period of 260 days or less?

Now n = 20, so:

Z = \frac{X - \mu}{s}

Z = \frac{260 - 266}{\frac{16}{\sqrt{20}}}

Z = -1.68

Z = -1.68 has a p-value of 0.0465.

0.0465 = 4.65% probability that a random sample of 20 pregnancies has a mean gestation period of 260 days or less.

3. What is the probability that a random sample of 50 pregnancies has a mean gestation period of 260 days or less?

Now n = 50, so:

Z = \frac{X - \mu}{s}

Z = \frac{260 - 266}{\frac{16}{\sqrt{50}}}

Z = -2.65

Z = -2.65 has a p-value of 0.0040.

0.004 = 0.4% probability that a random sample of 50 pregnancies has a mean gestation period of 260 days or less.

4. What is the probability a random sample of size 15 will have a mean gestation period within 10 days of the mean?

Sample of size 15 means that n = 15. This probability is the p-value of Z when X = 276 subtracted by the p-value of Z when X = 256.

X = 276

Z = \frac{X - \mu}{s}

Z = \frac{276 - 266}{\frac{16}{\sqrt{15}}}

Z = 2.42

Z = 2.42 has a p-value of 0.9922.

X = 256

Z = \frac{X - \mu}{s}

Z = \frac{256 - 266}{\frac{16}{\sqrt{15}}}

Z = -2.42

Z = -2.42 has a p-value of 0.0078.

0.9922 - 0.0078 = 0.9844

0.9844 = 98.44% probability a random sample of size 15 will have a mean gestation period within 10 days of the mean.

8 0
3 years ago
A sales associate at a local Boutique sold a jacket for $200 less a 10% discount what is the discount on the jacket
Nikitich [7]
It's probably $190 I hope this helped you
3 0
3 years ago
Find the volume of the triangular prism.
OleMash [197]
The answer is D because 3x3x4=36 ekekekekkeekkeke
4 0
3 years ago
Read 2 more answers
Evaluate the expression (4x^3)^2 for x=2 <br><br> A.128<br> B.512<br> C.256<br> D. 1024
julsineya [31]

Answer:

d:) 1024

Step-by-step explanation:

Evaluate (4 x^3)^2 where x = 2:

(4 x^3)^2 = (4×2^3)^2

Multiply each exponent in 4×2^3 by 2:

4^2 (2^3)^2

Multiply exponents. (2^3)^2 = 2^(3×2):

2^(3×2)×4^2

4^2 = 16:

2^(3×2)×16

3×2 = 6:

2^6×16

2^6 = (2^3)^2 = (2×2^2)^2:

(2×2^2)^2 16

2^2 = 4:

(2×4)^2 16

2×4 = 8:

8^2×16

8^2 = 64:

64×16

| | 6 | 4

× | | 1 | 6

| 3 | 8 | 4

| 6 | 4 | 0

1 | 0 | 2 | 4:

Answer:  1024

8 0
3 years ago
Read 2 more answers
Other questions:
  • The radius of a cylindrical gift box is ​(3x +4)) inches. The height of the gift box is twice the radius. What is the surface ar
    5·1 answer
  • I need help on this question
    11·2 answers
  • i am so not 10 im 16 years old i submitted my age in incorrectly i was so ready to ask questions and nobody never answers mines
    12·1 answer
  • What is the result when two or more are added<br>​
    12·1 answer
  • Which option is an example of an experiment?
    15·1 answer
  • If l=3, w= 3, and h= 5, what is the volume of this box​
    7·2 answers
  • Use substitution: y= 5 and y = 7x -2*
    7·1 answer
  • Leia cuts congruent triangular patches with an area of 15 square centimeters from a rectangular piece of fabric that is 15 centi
    14·1 answer
  • Determine whether the function are inverse. F(x)=6x+l;g(x)=6x-1
    13·1 answer
  • Please help!!!! Asap
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!