1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Art [367]
3 years ago
15

TIMED PLEASE HELP ASAP! MULTIPLE CHOICE, BRAINLIEST FOR CORRECT ANSWER!

Mathematics
2 answers:
MAXImum [283]3 years ago
6 0

Answer:

its the first one I know that because I checked with someone

erma4kov [3.2K]3 years ago
5 0
I think it is the third one
You might be interested in
Penny gets paid $12 per hour to work at the coffee shop: The amount of money she earns depends on the number of hours she works.
prisoha [69]

Answer:

B- The dependent variable is the amount of money she earns, and the independent variable is the number of hours she works.

Step-by-step explanation:

The amount of money she earns depends on how many hours she works, making that the dependant variable.

6 0
3 years ago
Jenna drove 35 miles in 30 minutes. At this rate, how many miles will she drive in 1 hour?
Llana [10]

Answer:

70 miles

Step-by-step explanation:

30 minn+30 min=1 hour/60 min

30 min=35 miles

add the minutes together then add the miles together witch will give you

1 hour/60 min=70 miles

4 0
3 years ago
Read 2 more answers
140 is what percent of 500?​
MAXImum [283]

Answer:

28%

Step-by-step explanation:

5 0
3 years ago
If the circle above is dilated using a scale factor of 5, what will be the radius of the resulting circle?
ladessa [460]
The circle radius will be 2 1/2
4 0
2 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Other questions:
  • Standard form............
    5·1 answer
  • Find the ratio of the trig function indicated and theta
    15·1 answer
  • PLEASE HELP ME!!! 5 POINTS!!!
    15·2 answers
  • What is the value of x? 4x=5x–12
    9·2 answers
  • What is a cost analysis
    13·2 answers
  • What are the domain and range of the function f(x) = 3x + 5?
    15·1 answer
  • Rewrite with only sin x and cos x<br><br> Cos 2x*l+sin x
    13·1 answer
  • Find 5x-3y-z if x=-2 y=2 and z=-3
    15·1 answer
  • A child fills a bucket with sand so that the bucket and sand together weigh 10 lbs, lifts it 2 feet up and then walks along the
    10·1 answer
  • Use the Distance Formula to find the distance between each pair of points. Round to the nearest tenth if necessary.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!