Answer:
The vertex form parabola y = 2( x+4)² -37
Step-by-step explanation:
<u>Step(i):-</u>
Given parabola equation j(x) = 2x² + 8x -5
Let y = 2x² + 8x -5
⇒ y = 2(x² + 2(4x)+(4)²-(4)²) -5
By using (a + b)² = a² +2ab +b²
y = 2(x+4)²- 32 -5
y = 2 ( x-(-4))² -37
<u><em>Step(ii):-</em></u>
The vertex form parabola y = a( x-h)² +k
The vertex form parabola y = 2(x+4)² -37
Answer:
Step-by-step explanation:
To calculate the weighted moving average for period 13 with weights 0.4 and 0.3.
P13 = (30.7x 0.4) + (42.0x 0.3)
P13 = 12.28 + 12.60
P13 = 24.88
Answer:
Step-by-step explanation:
Sum = -14
Product = - 32
So, the factors = -16 , 2
When we add -16 +2 = -12 and when we multiply it is -32
w⁴ - 14w² - 32 = w⁴ - 16w² + 2w² - 16 * 2
= w²(w² - 16) + 2(w² - 16)
= (w² - 16)(w² + 2)
= (w² - 4²)(w² + 2)
= (w + 4)(w - 4)(w² + 2)
First, find the value of the expression within the parentheses, which is 8x. Since x=1/4, 8x=8/4 or 2. Next, multiply this value by -3. -3*2=-6