Answer:
B) FADH2 -- FMN of Complex I -- Fe-S of Complex II -- Q -- Fe-S of Complex III -- Cyt c -- Cyt a of Complex IV -- O2
Explanation:
FADH2 and NADH give their high energy electrons to the terminal electron acceptor molecular oxygen via an electron transport chain. As the electrons move through electron carriers of the electron transport chain, they lose their free energy. Part of the free energy of the electrons is used to pump the protons from the matrix into the intermembrane space. Therefore, part of the energy of electrons is temporarily stored in the form of a proton concentration gradient.
NADH gives its electrons to FMN of complex I while FADH2 gives its electrons to the Fe-S center of complex II. Both the complexes are oxidized by coenzyme (Q) which in turn reduces Fe-S centers of complex III. Cyt c of complex IV obtains electrons from complex III and passes them to CuA center, to heme "a" to heme "a3-CuB center" and finally to the molecular oxygen.
So, the compounds arranged with respect to the energy content of electrons in descending order are as follows: FADH2 -- FMN of Complex I -- Fe-S of Complex II -- Q -- Fe-S of Complex III -- Cyt c -- Cyt a of Complex IV -- O2.
Biotic Factors are any living components that affect other organisms, and since soil is not alive (soil is an abiotic factor) then you can eliminate A., B., and C. D is the answer choice that has only biotic examples.
Answer:
1)
- frequencies of light-colored mice ≅ 0.74
- frequencies of dark-colored mice ≅ 0.26
2)
- frequencies of light-colored mice ≅ 0.13
- frequencies of dark-colored mice ≅ 0.87
3)
- q² = 0.74
- p² = 0.02
- 2pq = 0.24
4)
- q² = 0.13
- p² = 0.4
- 2pq = 0.46
5)
The dark-colored fur seems to have the greatest overall selective advantage
6)
Dark lava, that changed the color of the substrate, from light to dark.
7)
Because to produce dark color, animals from the different regions suffered different mutations that drove them to have almost the same dark fur color. All of the animals are inhabiting dark substrate, which means that this environmental condition is favoring the same phenotype.
8)
To see if the mice population is evolving, you need to take a sample of animals per year, through many years, and analyze if it is changing or not. If the population is evolving, you will notice a change in the allelic and genotypic frequencies over the years, favoring one genotype or the other. If the population is not evolving, the frequencies will keep equal through the years, it will not change.
Explanation:
Due to technical problems, you will find the complete explanation in the attached files.
The guinea pig and the raccoon are both members of :
The eukarya domain, the kingdom of animals, the chordates and the mammal class.
After the level of class (Mammalia), they start to belong to different groups.
The guinea pig belongs to rodents and the raccoon belongs to the carnivores.
I believe that the food web is more stable