Answer:
Sorry that you had to experience that.
Step-by-step explanation:
Answer:
268,770 AU i think im not to sure
Step-by-step explanation:
Answer:
The ira will contain $228,278.05 when he retires at age 65. This is 6.04 times the amount of money he deposited.
Step-by-step explanation:
In order to solve this problem, we can make use of the following formula:
![FV=PMT[\frac{(1+i)^{n}-1}{i}]](https://tex.z-dn.net/?f=FV%3DPMT%5B%5Cfrac%7B%281%2Bi%29%5E%7Bn%7D-1%7D%7Bi%7D%5D)
Where:
FV= Future value of the ira
PMT= the amount of money you deposit each month
i= is the interest rate per period
n=number of periods
in this case we will assume the interest will be compounded each month.
So:
FV this is what we need to know.
PMT= $75 the amount he will deposit each month
t = 42 years,
this is 65-23=42
n=42 years * 12 months/year = 504 months
i=0.07/12
So we can now use the given formula:
![FV=PMT[\frac{(1+i)^{n}-1}{i}]](https://tex.z-dn.net/?f=FV%3DPMT%5B%5Cfrac%7B%281%2Bi%29%5E%7Bn%7D-1%7D%7Bi%7D%5D)
![FV=75[\frac{(1+\frac{0.07}{12})^{504}-1}{\frac{0.07}{12}}]](https://tex.z-dn.net/?f=FV%3D75%5B%5Cfrac%7B%281%2B%5Cfrac%7B0.07%7D%7B12%7D%29%5E%7B504%7D-1%7D%7B%5Cfrac%7B0.07%7D%7B12%7D%7D%5D)
So we get:
FV=$228,278.05
which is the amount of money he will have after 42 years.
In total, he deposited:
$75*504months = $37,800
so he will have:
times the amount of money he deposited throughout this time.
AC=x, BC=x√3, AB is a hypotenuse (look at the pic below)
x√3>x, consequently ∠B<∠A and we have to find cosB, which is
(x√3)/AB.
<em>Let's find AB:</em>
AB=√(x²+(x√3)²)=√(x²+3x²)=√(4x²)=2x
<em>Thus, cosB is:</em>
cosB=(x√3)/(2x)=
√3/2
Answer:
92.8%
Step-by-step explanation:
you would just subtract 7.2 from 100