Answer:
A. It has reflectional symmetry
B. It is symmetrical
D. It has five lines of symmetry
Step-by-step explanation:
we know that
A regular pentagon has 5 sides and 5 lines of symmetry. The number of lines of symmetry in a regular polygon is equal to the number of sides
Every regular polygon has reflectional symmetry
Regular polygons are symmetrical
therefore
A. It has reflectional symmetry ------> Is true
B. It is symmetrical -----> Is true
C. It has exactly one line of symmetry ----> Is false
D. It has five lines of symmetry -----> Is true
Answer: 2/7
Step-by-step explanation:
You subtract the y intercepts and put it over the x intercepts
2-(-2)=4 and 9-(-5)=14 so it is 4/14 which sinplifies to 2/7
Currently the denominator is

. If you want to move those up so they sit with the numerator, then what you have to do is make the exponents negative. You make a negative exponent positive by moving it under a 1; undo that process to make the exponents negative. If we do that, then the expression would be
Answer:
The determinant is 15.
Step-by-step explanation:
You need to calculate the determinant of the given matrix.
1. Subtract column 3 multiplied by 3 from column 1 (C1=C1−(3)C3):
![\left[\begin{array}{ccc}-25&-23&9\\0&3&1\\-5&5&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%26-23%269%5C%5C0%263%261%5C%5C-5%265%263%5Cend%7Barray%7D%5Cright%5D)
2. Subtract column 3 multiplied by 3 from column 2 (C2=C2−(3)C3):
![\left[\begin{array}{ccc}-25&-23&9\\0&0&1\\-5&-4&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%26-23%269%5C%5C0%260%261%5C%5C-5%26-4%263%5Cend%7Barray%7D%5Cright%5D)
3. Expand along the row 2: (See attached picture).
We get that the answer is 15. The determinant is 15.