Suppose
is another solution. Then

Substituting these derivatives into the ODE gives


Let
, so that

Then the ODE becomes

and we can condense the left hand side as a derivative of a product,
![\dfrac{\mathrm d}{\mathrm dx}[x^5u]=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Bx%5E5u%5D%3D0)
Integrate both sides with respect to
:
![\displaystyle\int\frac{\mathrm d}{\mathrm dx}[x^5u]\,\mathrm dx=C](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cint%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Bx%5E5u%5D%5C%2C%5Cmathrm%20dx%3DC)

Solve for
:

Solve for
:

So another linearly independent solution is
.
Answer:
500
Step-by-step explanation:
ikw na mag explain nyan
Answer:
- 28
Step-by-step explanation:
Plug in 7 for x
5 + 7 - 5 x 8
5 + 7 - 40
12 - 40
-28
Suppose you have a Kohls coupon of $49000 and you want to know how much you will save for an item if the discount is 60 percent.
Solution:
Replacing the given values in formula (a) we have:
Amount Saved = Original Price x Discount in Percent / 100. So,
Amount Saved = 49000 x 60 / 100
Amount Saved = 2940000 / 100
Amount Saved = $29400 (answer).
In other words, a 60% discount for a item with original price of $49000 is equal to $29400 (Amount Saved).
Note that to find the amount saved, just multiply it by the percentage and divide by 100.