Answer:
1 pair is $20. 3 pairs is $60. 4 pairs is $80. 5 pairs is $100. Please don't delete my answer, I am only trying to help.
0.144 because the number after 3 is 5 and that rounds the 3 to a 4.
Answer:
In order to find the variance we need to calculate first the second moment given by:
And the variance is given by:
![Var(X) = E(X^2) +[E(X)]^2 = 23.36 -[4.74]^2 = 0.8924](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20%2B%5BE%28X%29%5D%5E2%20%3D%2023.36%20-%5B4.74%5D%5E2%20%3D%200.8924)
And the deviation would be:

Step-by-step explanation:
Previous concepts
The expected value of a random variable X is the n-th moment about zero of a probability density function f(x) if X is continuous, or the weighted average for a discrete probability distribution, if X is discrete.
The variance of a random variable X represent the spread of the possible values of the variable. The variance of X is written as Var(X).
Solution to the problem
For this case we have the following distribution given:
X 3 4 5 6
P(X) 0.07 0.4 0.25 0.28
We can calculate the mean with the following formula:

In order to find the variance we need to calculate first the second moment given by:

And the variance is given by:
![Var(X) = E(X^2) +[E(X)]^2 = 23.36 -[4.74]^2 = 0.8924](https://tex.z-dn.net/?f=%20Var%28X%29%20%3D%20E%28X%5E2%29%20%2B%5BE%28X%29%5D%5E2%20%3D%2023.36%20-%5B4.74%5D%5E2%20%3D%200.8924)
And the deviation would be:

Answer:
What is it?
Step-by-step explanation:
Answer:
81 900 000 000 000 is 8.19 × 10¹³
Step-by-step explanation:
Write the first number 8.
Add a decimal point after it: 8.
Now count the number of digits after 8. There are 13 digits.
So, in standard form: 81 900 000 000 000 is 8.19 × 10¹³