Answer:

Step-by-step explanation:
5x = 4y - 3
Standard form is Ax + By = C, so first subtract 4y to both sides:
5x - 4y = -3
Original position:
A-(-8,-4)
B-(-6,3)
C-(-3,7)
D-(-2,-2)
Translation:
A'-(-4,-4)
B'-(-2,3)
C'-(1,7)
D'-(2,-2)
Vertex C will be in quadrant 1 (+,+) after being translated 4 unites to the right.
Answer: 6(x²-4x+4-4)+1=0, 6(x-2)²-24+1=0, 6(x-2)²=23, x-2=±√(23/6), x=2±√(23/6)=2±1.95789, so x=3.95789 or 0.04211 approx. these are the zeros.
step by step explanation:
\boxed{\boxed{\dfrac{12+\sqrt{138}}{6},\ \dfrac{12-\sqrt{138}}{6}}}
Solution-
The quadratic function is,
6x^2-24x + 1
a = 6, b = -24, c = 1
x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}
=\dfrac{-(-24)\pm \sqrt{-24^2-4\cdot 6\cdot 1}}{2\cdot 6}
=\dfrac{24\pm \sqrt{576-24}}{12}
=\dfrac{24\pm \sqrt{552}}{12}
=\dfrac{24\pm 2\sqrt{138}}{12}
=\dfrac{12\pm \sqrt{138}}{6}
=\dfrac{12+\sqrt{138}}{6},\ \dfrac{12-\sqrt{138}}{6}
5p-9=2p+12
+9 +9
5p= 2p+21
-2p -2p
3p/3=21/3
p=7