Answer: OPTION B.
Step-by-step explanation:
Given the following System of equations:

You can use the Elimination Method to solve it. The steps are:
1. You can mutliply the second equation by -3.
2. Then you must add the equations.
3. Solve for the variable "y".
Then:

4. Now that you know the value of the variable "y", you must substitute it into any original equation.
5. The final step is to solve for "x" in order to find its value.
Then:

Therefore, the solution is:

Answer:
x = 155º
Step-by-step explanation:
y = 25° {Vertically opposite angles}
x + y = 180 {Co-interior angles are supplementary}
x + 25 = 180
Subtract 25 from both sides
x = 180 - 25
x = 155°
If they're travelling towards each other;
Effective speed = 75+55 = 130
Distance = 338m
Time= distance/ speed
T= 338/130
T= 2.6 hrs
If she stopped at 8;05, and she started 20 minutes earlier, just imaging a clock at 8:05 and turn back time 20 minutes.
Five minutes would be 8:00, ten minutes is 7:55, fifteen minutes is 7:50, and twenty minutes is 7:45. This, she started at 7:45
Answers: height, "h", of a triangle: <span> h = 2A / (b₁ + b₂) .
___________________________________________________ </span>
Explanation:
__________________________________________________
The area of a triangle, "A", is equal to (1/2) * (b₁ + b₂) * h ;
or: A = (1/2) * (b₁ + b₂) * h
or: write as: A = [(b₁ + b₂) * h] / 2 ;
___________________________________________
in which: A = area of the triangle;
b₁ = length of one of the bases
of the triangle ("base 1");
b₂ = length of the other base
of the triangle ("base 2");
h = height of the triangle;
____________________________________________________
To find the height of the triangle, we rearrange the formula to solve for "h" (height); assuming that all the units are the same (e.g. feet, centimeters); if no "units" are given, then the assumption is that the units are all the same.
We can use the term "units" if desired, in such cases; in which the area, "A" is measured in "square units"; or "units²",
_________________________________
So, given our formula for the "Area, "A"; of a triangle:
_________________________________________________
A = [(b₁ + b₂) * h] / 2 ; we solve for "h" in terms of the other values; by isolating "h" (height) on one side of the equation.
If we knew the other values; we plug in the those other values.
______________________________________________
Given: A = [(b₁ + b₂) * h] / 2 ;
Multiply EACH side of the equation by "2" ;
_________________________________________
2*A = { [(b₁ + b₂) * h] / 2 } * 2 ;
_________________________________________
to get:
_________________________________________
2A = (b₁ + b₂) * h ;
_____________________________________________________
Now, divide EACH side of the equation by: "(b₁ + b₂)" ; to isolate "h"
on one side of the equation; and solve for "h" (height) in terms of the other values;
_____________________________________
2A / (b₁ + b₂) = [ (b₁ + b₂) * h ] / (b₁ + b₂);
______________________________________
to get:
_______________________________________________
2A / (b₁ + b₂) = h ; ↔<span> h = 2A / (b₁ + b₂) .
__________________________________________________</span>