something noteworthy is that the independent and squared variable in this case will be the "x", namely the graph of that quadratic is a vertical parabola.
![\bf f(x) = (x+2)(x-4)\implies 0=(x+2)(x-4)\implies x = \begin{cases} -2\\ 4 \end{cases} \\\\\\ \boxed{-2}\rule[0.35em]{7em}{0.25pt}0\rule[0.35em]{3em}{0.25pt}\stackrel{\downarrow }{1}\rule[0.35em]{10em}{0.25pt}\boxed{4}](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%20%3D%20%28x%2B2%29%28x-4%29%5Cimplies%200%3D%28x%2B2%29%28x-4%29%5Cimplies%20x%20%3D%20%5Cbegin%7Bcases%7D%20-2%5C%5C%204%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cboxed%7B-2%7D%5Crule%5B0.35em%5D%7B7em%7D%7B0.25pt%7D0%5Crule%5B0.35em%5D%7B3em%7D%7B0.25pt%7D%5Cstackrel%7B%5Cdownarrow%20%7D%7B1%7D%5Crule%5B0.35em%5D%7B10em%7D%7B0.25pt%7D%5Cboxed%7B4%7D)
so the parabola has solutions at x = -2 and x = 4, and its vertex will be half-way between those two guys, namely at x = 1.
since this is a vertical parabola, its axis of symmetry, the line that splits its into twin sides, will be a vertical line, and it'll be the x-coordinate of the vertex, since the vertex hasa a coordinate of x = 1, then the axis of symmetry is the vertical line of x = 1.
A=7 is what I got since this was a equation problem
The equation for point slope form is written as :
y - y1 =m(x-x1)
M is the slope which is given as -37
The given point would be X1 and y1, where X1 is 5 and y1 is 8.
The equation becomes:
y - 8 = -37(x -5)
Answer:
option D

Step-by-step explanation:
Given in the question are 4 number
5√1/3 - 
2 - 
9 + 

A Complex Number is a combination of a Real Number and an Imaginary Number
<h3>Example </h3>
a + ib
where a is real number
b is imaginary number
i is 'lota' which is √-1
<h3>So according to the definition above </h3>
is complex number in which
is real part
=
is the imaginary part