1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grandymaker [24]
3 years ago
7

Which Relation is a function ​

Mathematics
1 answer:
ValentinkaMS [17]3 years ago
3 0

Answer:

It is A

Step-by-step explanation:

also i had the exact same question on a test which i got a 100% on.

You might be interested in
Which quadrant does the terminal side of angle -190° lie?
Luda [366]

Answer:

Quadrant lll

Step-by-step explanation:

Since the cosine of the angle is positive, the sine of the angle must be negative and the terminal side of the angle lies in either Quadrant III or IV.

8 0
3 years ago
Need help please its Calculus. Ill give the 5 stars as well.
algol13

Answer:

\displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations
  • Equality Properties

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Separation of Variables
  • Solving Differentials

Integrals

  • Antiderivatives

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Logarithmic Integration:                                                                                            \displaystyle \int {\frac{1}{u}} \, dx = ln|u| + C

Step-by-step explanation:

*Note:  

When solving differential equations in slope fields, disregard the integration constant C for variable y.

<u />

<u>Step 1: Define</u>

\displaystyle \frac{dy}{dx} = x^2(y - 1)

\displaystyle f(0) = 3

<u>Step 2: Rewrite</u>

<em>Separation of Variables. Get differential equation to a form where we can integrate both sides and rewrite Leibniz Notation.</em>

  1. [Separation of Variables] Rewrite Leibniz Notation:                                      \displaystyle dy = x^2(y - 1) \ dx
  2. [Separation of Variables] Isolate <em>y</em>'s together:                                               \displaystyle \frac{1}{y - 1} \ dy = x^2 \ dx

<u>Step 3: Find General Solution Pt. 1</u>

  1. [Differential] Integrate both sides:                                                                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \int {x^2} \, dx
  2. [dx Integral] Integrate [Integration Rule - Reverse Power Rule]:                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \frac{x^3}{3} + C

<u>Step 4: Find General Solution Pt. 2</u>

<em>Identify variables for u-substitution for dy.</em>

  1. Set:                                                                                                                    \displaystyle u = y - 1
  2. Differentiate [Basic Power Rule]:                                                                     \displaystyle du = dy

<u>Step 5: Find General Solution Pt. 3</u>

  1. [dy Integral] U-Substitution:                                                                             \displaystyle \int {\frac{1}{u}} \, du = \frac{x^3}{3} + C
  2. [dy Integral] Integrate [Logarithmic Integration]:                                            \displaystyle ln|u| = \frac{x^3}{3} + C
  3. [Equality Property] e both sides:                                                                     \displaystyle e^\bigg{ln|u|} = e^\bigg{\frac{x^3}{3} + C}
  4. Simplify:                                                                                                             \displaystyle |u| = Ce^\bigg{\frac{x^3}{3}}
  5. Rewrite:                                                                                                             \displaystyle u = \pm Ce^\bigg{\frac{x^3}{3}}
  6. Back-Substitute:                                                                                               \displaystyle y - 1 = \pm Ce^\bigg{\frac{x^3}{3}}
  7. [Equality Property] Isolate <em>y</em>:                                                                            \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

General Form:  \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

<u>Step 6: Find Particular Solution</u>

  1. Substitute in function values [General Form]:                                                \displaystyle 3 = \pm Ce^\bigg{\frac{0^3}{3}} + 1
  2. Simplify:                                                                                                             \displaystyle 3 = \pm C + 1
  3. [Equality Property] Isolate <em>C</em>:                                                                           \displaystyle 2 = \pm C
  4. Rewrite:                                                                                                             \displaystyle C = 2
  5. Substitute in <em>C</em> [General Form]:                                                                       \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

∴ our particular solution is  \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e  

6 0
3 years ago
Please help me with geometry question
statuscvo [17]

Answer:

THE ANWSER IS 34 INCHES

Step-by-step explanation:

NOTHING ELES IS 34 INCHES THAN THAT

3 0
3 years ago
If you wanted a 40 foot tree in your yard, how much faster would a poplar, which grows 8 feet per year, reach that goal than a r
Verizon [17]

Answer:

Not totally sure if i'm reading the question right buuuut;

the answer is (I think) a poplar would reach 40 feet high in 5 years, while the red maple would reach the goal in 8.

Step-by-step explanation:

using division, 40/8 = 5 years

40/ 5 = 8 years.

like I said, not positive I read the question correctly but I hope this helps xx have a nice day :)

5 0
4 years ago
What is the solution of the equation 4x-6=10x-3?
ValentinkaMS [17]

Answer:

I think it is x= -0.5

Step-by-step explanation:

hope it helps

8 0
3 years ago
Other questions:
  • How do you find the scale factor
    6·1 answer
  • 20 pts and brainlest
    15·1 answer
  • Express the complex number in trigonometric form. -4
    6·2 answers
  • Why type of angle pair is formed by angles DCE and BCE
    12·1 answer
  • I need help with this question make sure to pick ALL.
    10·1 answer
  • I need help with this
    13·1 answer
  • You are playing a game where you have 1 4 a chance of winning $500, 1 4 chance of winning $200 and 1 2 chance of losing $375. Wh
    7·2 answers
  • The ____________________ of water is a measurement of how acidic it is, on a scale of 0 to 14.
    10·1 answer
  • Number 12 please help 10 points no links pleAse
    15·1 answer
  • 2(1-3n)+5=-4(2n+1) xc
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!