Answer:Although the Quadratic Formula always works as a strategy to solve quadratic equations, for many problems it is not the most efficient method. Sometimes it is faster to factor or complete the square or even just "out-think" the problem. For each equation below, choose the method you think is most efficient to solve the equation and explain your reason. Note that you do not actually need to solve the equation. a. x2+7x−8=0x
2
+7x−8=0, b. (x+2)2=49(x+2)
2
=49, c. 5x2−x−7=05x
2
−x−7=0, d. x2+4x=−1x
2
+4x=−1.
Company a = 22 + 0.07m
company b = 8 + 0.12m
We are looking for the time when the prices are equal. i.e. the price of company a = the price of company b
company a = company b
22 + 0.07m = 8 + 0.12m
22 - 8 = 0.12m - 0.07m
14 = 0.05m
m = 14/0.05
m = 280
Therefore, the two companies will cost the same if you talk for 280 minutes
Answer:
The percentage of people should be seen by the doctor between 13 and
17 minutes is 68% ⇒ 2nd term
Step-by-step explanation:
* Lets explain how to solve the problem
- Wait times at a doctor's office are typically 15 minutes, with a standard
deviation of 2 minutes
- We want to find the percentage of people should be seen by the
doctor between 13 and 17 minutes
* To find the percentage we will find z-score
∵ The rule the z-score is z = (x - μ)/σ , where
# x is the score
# μ is the mean
# σ is the standard deviation
∵ The mean is 15 minutes and standard deviation is 2 minutes
∴ μ = 15 , σ = 2
∵ The people should be seen by the doctor between 13 and
17 minutes
∵ x = 13 and 17
∴ z = 
∴ z = 
- Lets use the standard normal distribution table
∵ P(z > -1) = 0.15866
∵ P(z < 1) = 0.84134
∴ P(-1 < z < 1) = 0.84134 - 0.15866 = 0.68268 ≅ 0.68
∵ P(13 < x < 17) = P(-1 < z < 1)
∴ P(13 < x < 17) = 0.68 × 100% = 68%
* The percentage of people should be seen by the doctor between
13 and 17 minutes is 68%
Answer:
439.2 miles
Step-by-step explanation:
multiply the days she traveled to the amount of mile she traveled a day
8×59.4 =439.2 miles