Answer:
(x+2)⋅(x−3)
Step-by-step explanation:
Answer:
0 ≤ x < 1.12 and 34.18 < x ≤ 39.87
Step-by-step explanation:
Let
x ----> is the number of tires produced, in thousands
C(x) ---> the production cost, in thousands of dollars
we have

This is a vertical parabola open downward (the leading coefficient is negative)
The vertex represent a maximum
The graph in the attached figure
we know that
Looking at the graph
For the interval [0,1.12) -----> 
The value of C(x) ----> 
That means ----> The production cost is under $75,000
For the interval (34.18,39.87] -----> 
The value of C(x) ----> 
That means ----> The production cost is under $75,000
Remember that the variable x (number of tires) cannot be a negative number
therefore
If the company wants to keep its production costs under $75,000 a reasonable domain for the constraint x is
0 ≤ x < 1.12 and 34.18 < x ≤ 39.87
Step-by-step explanation:
X+100=180(linear pair)
X=180-100
X=80
30+y+x=180(sum of angle of triangle)
Y=180-110
Y=70
The answer choices are sufficiently far apart that you can work this backward. The sum will be ...
236,196*(1 + 1/3 + 1/9 + 1/27 + ...)
so a reasonable estimate can be given by an infinite series with a common ratio of 1/3. That sum is
236,196*(1/(1 - 1/3)) = 236,196*(3/2)
Without doing any detailed calculation, you know the best answer choice is ...
354,292
_____
There are log(236196/4)/log(3) + 1 = 11 terms* in the series, so the sum will be found to be 4(3^11 -1)/(3-1) = 2*(3^11-1) = 354,292.
Using the above approach (working backward from the last term), the sum will be 236,196*(1-(1/3)^11)/(1-(1/3)) = 236,196*1.49999153246 = 354,292
___
* If you just compute log(236196/4)/log(3) = 10 terms, then your sum comes out 118,096--a tempting choice. However, you must realize that the last term is larger than this, so this will not be the sum. (In fact, the sum is this value added to the last term.)