1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilya [14]
3 years ago
8

Write Thirty-four thousand.six hundred fifty-two as a base ten number​

Mathematics
1 answer:
Umnica [9.8K]3 years ago
6 0

Answer:

34 652 is the number.Know find the ten place which is the (5).

You might be interested in
1.89E12. What does e stand for
Eduardwww [97]
The "e" just lets you know that it's scientific notation.
5 0
3 years ago
Read 2 more answers
What is the term in 3y=7x-9
ehidna [41]
The term in that equation is 3x 7x and -9 hope this helps
7 0
3 years ago
Please please help worth lots of points Given ƒ(x) = x - 1, complete Parts A and B. Part A: Using the table provided, create fiv
Gemiola [76]
Wouldn’t you just for part a, insert different x values and solve to get your y value. and do that over and over again with different numbers to create a data table. and then for part b you’ll just make a graph and put down the points. so for the first slot, do 0 for x. y will equal -1 after solving, so your first plot for part b can be (0,-1) and continue on from there
5 0
3 years ago
What is the constant of proportionality?
beks73 [17]

Answer:

A. 12


Step-by-step explanation:


4 0
3 years ago
Read 2 more answers
Compute the sum:
Nady [450]
You could use perturbation method to calculate this sum. Let's start from:

S_n=\sum\limits_{k=0}^nk!\\\\\\\(1)\qquad\boxed{S_{n+1}=S_n+(n+1)!}

On the other hand, we have:

S_{n+1}=\sum\limits_{k=0}^{n+1}k!=0!+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=1}^{n+1}k!=1+\sum\limits_{k=0}^{n}(k+1)!=\\\\\\=1+\sum\limits_{k=0}^{n}k!(k+1)=1+\sum\limits_{k=0}^{n}(k\cdot k!+k!)=1+\sum\limits_{k=0}^{n}k\cdot k!+\sum\limits_{k=0}^{n}k!\\\\\\(2)\qquad \boxed{S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n}

So from (1) and (2) we have:

\begin{cases}S_{n+1}=S_n+(n+1)!\\\\S_{n+1}=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\end{cases}\\\\\\
S_n+(n+1)!=1+\sum\limits_{k=0}^{n}k\cdot k!+S_n\\\\\\
(\star)\qquad\boxed{\sum\limits_{k=0}^{n}k\cdot k!=(n+1)!-1}

Now, let's try to calculate sum \sum\limits_{k=0}^{n}k\cdot k!, but this time we use perturbation method.

S_n=\sum\limits_{k=0}^nk\cdot k!\\\\\\
\boxed{S_{n+1}=S_n+(n+1)(n+1)!}\\\\\\


but:

S_{n+1}=\sum\limits_{k=0}^{n+1}k\cdot k!=0\cdot0!+\sum\limits_{k=1}^{n+1}k\cdot k!=0+\sum\limits_{k=0}^{n}(k+1)(k+1)!=\\\\\\=
\sum\limits_{k=0}^{n}(k+1)(k+1)k!=\sum\limits_{k=0}^{n}(k^2+2k+1)k!=\\\\\\=
\sum\limits_{k=0}^{n}\left[(k^2+1)k!+2k\cdot k!\right]=\sum\limits_{k=0}^{n}(k^2+1)k!+\sum\limits_{k=0}^n2k\cdot k!=\\\\\\=\sum\limits_{k=0}^{n}(k^2+1)k!+2\sum\limits_{k=0}^nk\cdot k!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\
\boxed{S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n}

When we join both equation there will be:

\begin{cases}S_{n+1}=S_n+(n+1)(n+1)!\\\\S_{n+1}=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\end{cases}\\\\\\
S_n+(n+1)(n+1)!=\sum\limits_{k=0}^{n}(k^2+1)k!+2S_n\\\\\\\\
\sum\limits_{k=0}^{n}(k^2+1)k!=S_n-2S_n+(n+1)(n+1)!=(n+1)(n+1)!-S_n=\\\\\\=
(n+1)(n+1)!-\sum\limits_{k=0}^nk\cdot k!\stackrel{(\star)}{=}(n+1)(n+1)!-[(n+1)!-1]=\\\\\\=(n+1)(n+1)!-(n+1)!+1=(n+1)!\cdot[n+1-1]+1=\\\\\\=
n(n+1)!+1

So the answer is:

\boxed{\sum\limits_{k=0}^{n}(1+k^2)k!=n(n+1)!+1}

Sorry for my bad english, but i hope it won't be a big problem :)
8 0
4 years ago
Other questions:
  • Estimated unit rate of 2.35 and 12 eggs
    6·1 answer
  • To make an international telephone call you need the code for the country you are calling. The codes for country A country B and
    10·1 answer
  • Find the complement of the angle shown.
    8·1 answer
  • Un bosque de 2 km2 está formado por hayas y pinos. Las hayas ocupan 380.000 m2 ¿Cuántos metros cuadrados ocupan los pinos?
    13·1 answer
  • How is 320 the same as 32 tens
    7·2 answers
  • Find the measure of each angle. ∠EFG and ∠LMN are supplementary angles, m∠EFG=(3x+17)º, and m∠LMN=(12x−5)º.
    9·1 answer
  • Please help me with this i need it
    6·1 answer
  • What value of y makes the 2 triangles congruent by SSS? (Side Side Side)
    15·1 answer
  • I needddd HELPPPPP i will give brainlist
    7·2 answers
  • What is 3 2/5 in a/b form?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!