Answer:
I believe she spent $150 for the first three months.
The hidden question i think is how many minutes did gloria spend in total OR how many packages did gloria need to buy. sorry i haven't done hidden questions in a long time.
Answer:
y = 3 x = 5
Step-by-step explanation:
If x is the game number, and y is the amount of touchdown passes for that specific game number, then (5,3) represents the idea that the quarter back threw y = 3 touchdown passes for game number x = 5
So the answer is choice D. This is the only ordered pair that comes from the given table. Something like (2,4) isn't true because the quarterback threw 1 touchdown pass (not 4) in game two.
Answer:
One Triangle = 2.09 in²
Two Triangles = 4.18 in²
Rectangle = 17.48 in²
Total area of whole trapezoid = 21.66 in²
Step-by-step explanation:
Since it was not clarified which region is shaded we will just find the area of each individual part of the shape.
Let's start with the triangles.
1. To find the area of a triangle, the formula is
. It is given that the base of one triangle is equal to 1.1 in and the height is equal to 3.8 in., so in the equation, it would look like:
in²
2. So now that we know one triangle is equal to 2.09 in², we now know that the other triangle is equal to the same area. To find the total of the two triangles you need to multiply the area by 2:
in²
Moving on to the rectangle...
1. To find the area of the rectangle we need to use the formula base times height or b x h. It is given that the height is 3.8 in while the length is 4.6 in. So in the equation it would look like:
in²
Now to find the total area of all shapes combined...
1. To do this, we just need to add up all the areas we found, so...
17.48 + 4.18 = 21.66 in²
$61 x 3= $183
$183 x .08225= 15.11
$183 + 15.11= $198.11
Answer: If 7+5i is a zero of a polynomial function of degree 5 with coefficients, then so is <u>its conjugate 7-i5</u>.
Step-by-step explanation:
- We know that when a complex number
is a root of a polynomial with degree 'n' , then the conjugate of the complex number (
) is also a root of the same polynomial.
Given: 7+5i is a zero of a polynomial function of degree 5 with coefficients
Here, 7+5i is a complex number.
So, it conjugate (
) is also a zero of a polynomial function.
Hence, if 7+5i is a zero of a polynomial function of degree 5 with coefficients, then so is <u>its conjugate 7-i5</u>.