Answer: RNAs are not processed before translation in prokaryotes, this process only takes place in eukaryotes.
Explanation:
Messenger RNA or mRNA is a single-straded ribonucleic acid that transfers the genetic information from the DNA (deoxyribonucleic acid) molecule of the cell nucleus to a ribosome (which are the machinery responsible for protein synthesis) in the cytoplasm. mRNA determines the order in which the amino acids of a protein will be joined and acts as a template or pattern for the synthesis of that protein. To accomplish this, the DNA molecule must be transcribed into an RNA molecule, which is used for protein synthesis.
The messenger RNA obtained after transcription is known as primary transcribed RNA or precursor RNA or pre-mRNA, which in most cases is not released from the transcription complex in a fully active form, but in eukaryotes it must undergo modifications before it can perform its function (RNA processing or maturation). These modifications include:
- Elimination of fragments (splicing): In most cases, the <u>mRNA undergoes the removal of internal, non-coding sequences called introns, and the connection of exons. This does not occur in prokaryotic cells</u>, as they do not have introns in their DNA.
- Protection by CAP: <u>Addition to the 5' end of the structure called "cap" or "capping"</u>, which is a modified guanine nucleotide, 7-methylguanosine triphosphate, via a 5'-5' triphosphate linkage, instead of the usual 3',5'-phosphodiester linkage. This cap is necessary for the normal RNA translation process and to maintain its stability.
- Polyadenylation signal: <u>Addition to the 3' end of a poly-A tail, a long polyadenylate sequence, whose bases are all adenine</u>. Its addition is mediated by a sequence or polyadenylation signal (AAAAAA), located 11-30 nucleotides upstream of the original 3' end. This tail protects the mRNA from degradation, and increases its half-life in the cytosol, so that more protein can be synthesized.
The mature mRNA (in eukaryotes) is transferred to the cytosol of the cell through pores in the nuclear envelope. Once in the cytoplasm, ribosomes are coupled to the mRNA. However, in prokaryotes, ribosome binding occurs while the mRNA strand is being synthesized. After a certain amount of time, the mRNA is degraded into its component nucleotides by ribonucleases. So, the transcription and translation processes are carried out in a similar way as in eukaryotic cells but they occur simultaneously. But, the fundamental difference is that, in prokaryotes, the messenger RNA does not undergo a maturation process and, therefore, no cap or tail is added and no introns are removed. Moreover, it does not have to leave the nucleus as in eukaryotes, because in prokaryotic cells there is no defined nucleus.
So, RNAs are not processed before translation in prokaryotes, this process only takes place in eukaryotes.
The aspect of his experimental process which is most important for obtaining reliable results is repeating his data collection many times.
Since the temperature is above 37 degrees, the child’s digestive
system will begin to slow down as the enzyme begins to denature because both
the internal temperature and the external body heat influence digestive
processes. The effect upon the system of the temperature of food and drink is
also a matter of significant consideration.
Cellular organizations
reproduction
metabolism
homeostasis
heredity
response to stimuli
growth and development
adaptation through evolution
I hope this helped you
Gradient should be in the blank, hope that helps