Continuing from the setup in the question linked above (and using the same symbols/variables), we have




The next part of the question asks to maximize this result - our target function which we'll call

- subject to

.
We can see that

is quadratic in

, so let's complete the square.

Since

are non-negative, it stands to reason that the total product will be maximized if

vanishes because

is a parabola with its vertex (a maximum) at (5, 25). Setting

, it's clear that the maximum of

will then be attained when

are largest, so the largest flux will be attained at

, which gives a flux of 10,800.
Answer:
Loan A will have the lowest total paycheck because the total of the principal than the same total for loan B
Answer: 
Step-by-step explanation:
This is a multiplication problem. You are multiplying
by 4. This also means 4 divided by 3. They are both the same.
<h2>
Answer</h2>
After the dilation
around the center of dilation (2, -2), our triangle will have coordinates:



<h2>Explanation</h2>
First, we are going to translate the center of dilation to the origin. Since the center of dilation is (2, -2) we need to move two units to the left (-2) and two units up (2) to get to the origin. Therefore, our first partial rule will be:
→
Next, we are going to perform our dilation, so we are going to multiply our resulting point by the dilation factor
. Therefore our second partial rule will be:
→
→
Now, the only thing left to create our actual rule is going back from the origin to the original center of dilation, so we need to move two units to the right (2) and two units down (-2)
→
→
Now that we have our rule, we just need to apply it to each point of our triangle to perform the required dilation:













Now we can finally draw our triangle: